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Let’s say you wake up one day and you decide that you want to burn a forest.
However, you do not have unlimited resources and you want to burn it as fast as
possible. You would then like to know what is the fastest way possible to burn
this forest. Fortunately, you have heard that mathematicians have recently been
studying the so-called burning number of graphs.

A burning process of a graph G goes as follows :
At time t = 0, you choose a vertex of G to burn.
At time t = 1, every vertex spreads its fire to all of its neighbours in G, then you
burn another vertex.
· · ·
At time t = k − 1, every vertex spreads its fire to all of its neighbours, then you
burn another vertex.
At time t = k, every vertex is already burnt.

The burning number of G (denoted B(G)) is the minimal k possible in any burning
process of G. Clearly the burning number exists, since we could just choose to burn
each vertex one per one until everything is burnt.

Let’s now be more formal. Given a connected graph G = (V,E), we can see
it as a metric space with distance between u, v ∈ V as d(u, v) equals the length
of the shortest path between u and v in G. You can convince yourself that d is
indeed a metric.

Denote Br(u) = {v ∈ V |d(u, v) ≤ r}.
B(G) is then the minimal k such that there exist u0, · · · , uk−1 ∈ V with
V = B0(u0) ∪ · · · ∪Bk−1(uk−1).

The most important conjecture about the burning number is that for any con-
nected graph G, B(G) ≤ ⌈

√
|G|⌉. We know this is true when G is a path and we

believe that paths are the hardest graphs to burn, which leads us to this conjecture.

In this paper, we will study a similar but different topic. Given three non-negative
numbers r1, r2, r3, for which classes of graphs is it always possible to cover them
with balls of radii r1, r2, r3?
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By covering a graph G = (V,E) with balls of radii r1, r2, r3, we mean that there
exist vertices u1, u2, u3 ∈ V such that V = Br1(u1) ∪Br2(u2) ∪Br3(u3).

We will now start going through some notation that will help us proving the The-
orem 1 of this report.
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Notation 1. If G is a graph, we will denote its vertex set by V (G) and its edge
set by E(G), so that G = (V (G), E(G)).

Notation 2. If G is a graph and k ∈ R, writing |G| = k means that |V (G)| = k.

Notation 3. If G is a graph, writing u ∈ G means that u ∈ V (G).

Notation 4. For a connected graph G and u, v ∈ G, we denote the shortest sub-
path of G with endpoints u, v by Pu,v. We can denote PG

u,v if we want to specify
that we are refering to the shortest subpath of G.

When we are dealing with graphs and subgraphs, it can be convenient to introduce
this notation when it is ambiguous which graph we are working with:

Notation 5. If G is a graph, we denote BG
r (a) = {u ∈ G | dG(a, u) ≤ r}.

In this report, we will often work with trees that have 5 leaves or less. These trees
can all be represented as in the next figure, where v1, v2, v4, v6, v7 are the leaves of
each branch, A = {u123, u345, u567} are the vertices of degree greater or equal to
3, and l1, · · · , l7 denote the vertex sets of each branches excluding u123, u345, u567,
so vi ∈ li for i ∈ {1, 2, 4, 6, 7}. Notice that it would be possible that some of
l1, · · · , l7 are empty. In such a case, we will simply establish that v1 is equal to its
corresponding closest vertex in A in the Figure 1.
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Figure 1 : Our model of a 5-leaves tree

For convenience, we will introduce another notation:

Notation 6. In the figure above, we denote li1,··· ,ik = li1 ∪ · · · ∪ lik ∪ {u ∈ A | u
is neighbour to at least two vertices in li1 ∪ · · · ∪ lik}.

For example, l1,2,3 = l1∪{u123}∪l2∪l3 and l4,5,6,7 = l4∪{u345}∪l5∪{u567}∪l6∪l7.

Notice here that li remains the same set that it previously was for each i ∈
{1, · · · , 7}, so that doesn’t create any problem.

We will look at connected graphs as metric spaces with distances between ver-
tices being the length of the shortest path linking them and we will study under
what circumstances it is possible to cover such graphs with certain balls of certain
radii.

We will now introduce some definitions.
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Definition 1. We say that a set {r1, . . . , rk} covers a graph G if there exist
u1, . . . , uk ∈ G such that V (G) = Br1(u1) ∪ . . . ∪Brk(uk).

Definition 2. We call a set {r1, . . . , rk} a cover if it covers every connected graph
G with |G| = 2(r1 + . . .+ rk) + k.

Definition 3. We say that a set {r1, · · · , rk} covers a vertex subset V of a graph
G if there exist u1, · · · , uk ∈ G such that V ⊆ Br1(u1) ∪ · · · ∪Brk(uk).

Now, we are ready to introduce the main theorem of this paper that we are trying
to prove:

Theorem 1. If 0 ≤ r1 ≤ r2 ≤ r3 and 2r2 ≤ r3, then {r1, r2, r3} is a cover.

In order to prove this, we will need a couple of results first.

Proposition 1. Let 0 ≤ r1 ≤ · · · ≤ rk, T a tree, and T ′ ⊆ T be connected. If
{r1, · · · , rk} is a cover for T , then it is a cover for T ′.

Proof. Pick u1, · · · , uk ∈ T such that V (T ) = Br1(u1) ∪ · · · ∪ Brk(uk). Let
1 ≤ i ≤ k.
If V (T ′)∩Bri(ui) is nonempty, then set vi ∈ V (T ′)∩Bri(ui) such that dT (vi, ui)
is minimal. vi is uniquely defined and either ui = vi or vi is a leaf of T ′.
Let I = {1 ≤ i ≤ k | V (T ′) ∩Bri(ui) is nonempty}.
Let u ∈ T ′ ⊆ T . Let 1 ≤ i ≤ k such that u ∈ Bri(ui). We know that i ∈ I.
If ui ∈ T ′, then u ∈ Bri(vi) = Bri(ui).
If ui /∈ T ′, then since T is a tree, there is a unique path P ⊆ T with endpoints ui
and u and vi ∈ P . So dT ′(u, vi) ≤ dT (u, ui), thus u ∈ Bri(vi).
We see that ∀u ∈ T ′, ∃i ∈ I such that Bri(vi), so V (T ′) = ∪i∈IBri(vi).

Proposition 2. Let 0 ≤ r1 ≤ · · · ≤ rk and G a graph. If H ⊆ {r1, · · · , rk} is a
cover for G, then {r1, · · · , rk} is a cover for G.
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Proof. Assume that H ⊆ {r1, · · · , rk} is a cover for G, then let H ′ = {i1, · · · , i|H|} ⊆
{1, · · · , k} and {u1, · · · , u|H|} ⊆ V (G) such that V (G) = Bri1

(u1) ∪ · · · ∪
Bri|H|

(u|H|). Then V (G) = (∪j∈H ′Bij(uj))∪(∪j∈{1,··· ,k}\H ′Bij(u1)), so {r1, · · · , rk}
covers G.

Proposition 3. Let 0 ≤ r1 ≤ · · · ≤ rk and G,H two graphs such that V (G) =
V (H) and E(H) ⊆ E(G). If {r1, · · · , rk} is a cover for H, then it is a cover for
G.

Proof. Let {r1, · · · , rk} be a cover for H, then let u1, · · · , uk ∈ G such that
V (H) = BH

r1
(u1) ∪ · · · ∪BH

rk
(uk).

Let i ∈ {1, · · · , k}, then let u ∈ BH
ri
(ui). PH

u,ui
⊆ E(G), so the shortest u, ui-

path in G has size at most |Pu,ui
|, so dG(u, ui) ≤ dH(u, ui) ≤ ri, so u ∈ BG

ri
(ui).

Since u was chosen arbitrarily, BH
ri
(ui) ⊆ BG

ri
(ui).

We then have that V (G) = V (H) = BH
r1
(u1) ∪ · · · ∪ BH

rk
(uk) ⊆ BG

r1
(u1) ∪ · · · ∪

BG
rk
(uk), so {r1, · · · , rk} covers G.

Theorem 2. Let 0 ≤ r1 ≤ r2. Then {r1, r2} is a cover ⇐⇒ 2r1 ≤ r2.

We will not prove this theorem in this paper since it has already been proven. How-
ever, we will use it many times through our proofs.

Corollary 1. Let 0 ≤ 2r1 ≤ r2. Then {r1, r2} covers any graph H with |H| ≤
2(r1 + r2) + 2.

Proof. Let H be a graph with |H| ≤ 2(r1+ r2)+2. Let k = 2(r1+ r2)− 2−|H|
and Pk a path of length k.
Construct G by choosing some vertices u ∈ H, v ∈ P5 and setting V (G) =
V (H) ∪ V (P5) and E(G) = E(P5) ∪ E(H) ∪ {uv}.
G is connected and |G| = |Pk|+ |H| = 2(r1+ r2) + 2. By Theorem 4, {r1, r2}
cover G, so by Proposition 4, {r1, r2} covers H ′.
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Definition 4. Let T be a tree. We say that T ′ ⊆ T is a corner-subtree of T if
T\T ′ is connected.

Lemma 1. Let T be a tree and T ′ ⊂ T a proper subtree. Then T ′ is a corner-
subtree of T ⇐⇒ T\T ′ is a corner-subtree of T .

Proof. We claim that T ′ = T\(T\T ′). To see this, let u ∈ T and notice that
u ∈ T ′ ⇐⇒ u /∈ T\T ′ ⇐⇒ u ∈ T\(T\T ′), so V (T ′) = V (T\(T\T ′)).
Now, if E(T ) = ∅, then T is a single vertex and has no proper subtree, so
E(T ) ̸= ∅.
Let now uv ∈ E(T ) and notice that uv ∈ E(T ′) ⇐⇒ u, v ∈ T ′ ⇐⇒
u, v /∈ T\T ′ ⇐⇒ u, v ∈ T\(T\T ′) ⇐⇒ uv ∈ E(T\(T\T ′)), so E(T ′) =
E(T\(T\T ′)).
We have that T ′ = T\(T\T ′), the claim is proven.

Since T ′ is a tree, that means T\(T\T ′) is connected.
If T ′ is a corner-subtree of T , then T\T ′ is connected, hence also a corner-subtree
of T since T\(T\T ′), proving ( =⇒ ).

For the other direction, if T\T ′ is a corner-subtree of T , then it is connected,
and by using the claim, we have that T ′ is connected, hence T ′ is a corner-subtree,
proving ( ⇐= ).

Lemma 2. Let 0 ≤ r and G a graph with longest path of size less or equal to
2r + 1. Then r covers G.

Proof. Let P ⊆ G be the longest path in G. Let T ⊆ G be a spanning tree for G
such that P ⊆ T . We have that V (G) = V (T ) and E(T ) ⊆ E(G).
Let v1, v2 ∈ T such that P = P T

v1,v2
. We know v1, v2 exist since T is a tree. Let

a ∈ T such that P ⊆ BT
r (a). a must exist since |P | ≤ 2r + 1.

Let u ∈ T .
Let i ∈ {1, 2} such that a ∈ P T

vi,u
, i exists, otherwise P T

v1,v2
∪ P T

v2,u
∪ P T

u,v1
would

contain a cycle and T wouldn’t be a tree. Let i ̸= j ∈ {1, 2}.
We then have that Pvi,u = Pvi,a ∪ Pa,u and that d(vi, a) + d(a, u) = d(vi, u) ≤
d(vi, vj) = d(vi, a) + d(a, vj) =⇒ d(a, u) ≤ d(a, vj) ≤ r, hence u ∈ Br(a).
Since u was chosen arbitrarily, T ⊆ Br(a). By Proposition 3, r covers G.
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Corollary 2. Let 0 ≤ r, T a tree and P ⊆ G its longest path with end vertex
v. Assume that {r} doesn’t cover G, then there is a vertex a ∈ P such that
d(a, v) = r.

Proof. Assume not, let u ̸= v be the other end vertex of the path, then |P | − 1 =
d(u, v) < r =⇒ |P | ≤ r, so by Lemma 2, {r} covers T , a contradiction.

Lemma 3. Let r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T a tree of size 2(r1+r2+r3)+3
such that {r1, r2, r3} is not a cover for T . Let u ∈ V (T ) and assume that
{r1, r2, r3} doesn’t cover T . If |Bri(u)| ≥ 2ri + 1 for i ∈ {1, 2}, then Bri(u) is
not a corner-subtree of T .

Proof. Assume that Bri(u) is a corner-subtree of T .
Let i ̸= j ∈ {1, 2}. Set T ′ = T\Bri(u). Then |T ′| = |T | − |Bri(u)| ≤ 2(rj +
r3) + 2. Since T ′ is connected, by Corollary 1, we can pick uj, u3 ∈ T ′ such
that V (T ′) = Brj(uj) ∪ Br3(u3). Then V (T ) = V (T ′) ∪ Bri(ui) = Brj(u1) ∪
Bri(ui) ∪Br3(u3). This contradicts the fact that {r1, r2, r3} is not a cover for T ,
so Bri(u) cannot be a corner-subtree of T .

Lemma 4. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as in
Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. Assume that {r1, r2, r3} doesn’t
cover T , then |li| ≤ 2r1 for all i ∈ {1, 2, 4, 6, 7}.

Proof. Assume that |li| > 2r1 for some i ∈ {1, 2, 4, 6, 7}, so |li| ≥ 2r1 + 1. Pick
a ∈ li such that d(vi, a) = r1, then Br1(a) ⊆ l1, T\(Br1(a)) is connected and
|Br1(a)| = 2r1 +1. By Lemma 2, Br1(a) is not a corner-subtree of T , but since
T\(Br1(a)) is connected, we have a contradiction.

Lemma 5. Let 0 ≤ r and T a tree with longest path P with |P | ≥ r3 + 1. If v
is an end-vertex of P and a ∈ P is such that d(a, v) = r, then B2r3(v) ⊆ Br3(a).

Proof. Let v be an end-vertex of P and a ∈ P such that d(a, v) = r. Let
u ∈ B2r3(v).
If a /∈ Pv,u, then since P is the longest path, we must have that d(a, u) ≤ d(a, v) =
r3, hence u ∈ Br3(a).
If a ∈ Pv,u, then d(v, u) = d(v, a) + d(a, u) since T is a tree =⇒ 2r3 ≤
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r3 + d(a, u) =⇒ d(a, u) ≤ r3 =⇒ u ∈ Br3(a).
Since u was chosen arbitrarily in B2r3(a), we have that B2r3(v) ⊆ Br3(a).

Lemma 6. Let 0 ≤ r1, r2, T a tree and P ⊆ T a subpath with end-vertex v and
r1 ≤ |P | ≤ 2r1 + 2r2 + 2. Let a ∈ P such that d(a, v) = r1, then r2 covers
P\Br1(a).

Proof. |P ∩ Br1(a)| = 2r1 + 1, so |P\Br1(a)| ≤ 2r2 + 1, so by Lemma 2, r2
covers P\Br1(a).

Lemma 7. Let 0 ≤ r1, · · · , rk and P be a path with 2(r1+ · · ·+rk)+k vertices.
Then {r1, · · · , rk} covers P .

Proof. We argue by induction on k.
The base case k = 1 is trivial by Lemma 2.

Now, assume the lemma is true for k ∈ N. Let 0 ≤ r1, · · · , rk+1 and P =
{u1, · · · , u(2r1+···+2rk+1+k+1)} be a path of size 2r1 + · · ·+ 2rk+1 + k + 1.
By induction hypothesis, we know we can cover the subpath P ′ = {u1, · · · ,
u(2r1+···+2rk+k)} with r1, · · · , rk. Then P\P ′ is a path of length 2rk+1 + 1, so we
can cover it with rk+1 by Lemma 6. P is covered by r1, · · · , rk+1.

Now that we have all these results, we can start focusing on Theorem 1. We will
prove it through many distinct propositions, since it takes a lot of space to write.
Each of the following propositions will treat a different case, and all of the different
cases will have been proven at the end.

Proposition 4. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as
in Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. If Pv1,v2 is the longest path in T ,
then {r1, r2, r3} covers T .

Proof. Assume that {r1, r2, r3} doesn’t cover T . By Lemma 3, |l1|, |l2| ≤ 2r1 ≤
2r2 ≤ r3, so d(u123, v1), d(u123, v2) ≤ r3. Assume now that there is some u ∈
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T\Pv1,v2 such that d(u, u123) > d(v2, u123). Then Pv1,v2 is a shorter path than
Pv1,u, which contradicts the fact that Pv1,v2 is the longest path in T , so d(u, u123) ≤
d(v2, u123) for all u ∈ T\Pv1,v2. So T = Pv1,v2 ∪ (T\Pv1,v2) ⊆ Br3(u123), so {r3}
covers T , so by Proposition 2, {r1, r2, r3} covers T .

Proposition 5. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as
in Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. If Pv1,v4 is the longest path in T ,
then {r1, r2, r3} covers T .

Proof. Assume that {r1, r2, r3} doesn’t cover T . By symmetry, we may assume
that |l7| ≥ |l6|. We separate the proof into two cases.

Case 1: |Pv1,v4| ≤ 2r3 + 2r2 + 2.
Choose c ∈ Pv1,v4 such that d(c, v4) = r3. By Lemma 4, |l4| ≤ 2r2 ≤ r3, so c ∈
l1,3 ∪ {u345}. Since Pv1,v4 is the longest path in T , d(c, v4) ≥ d(c, v7) ≥ d(c, v6),
so l5,6,7 ⊆ Br3(c).
Now, by Lemma 4, we can choose a ∈ l2 such that l2 ⊆ Br1(a).
Finally, by Lemma 6, we can choose b ∈ P\Br3(c) such that Br2(b) ⊆ P\Br3(c).
We get that T = Br1(a) ∪Br2(b) ∪Br3(c), so {r1, r2, r3} covers T .
Case 1 leads to a contradiction.

Case 2: |Pv1,v4| > 2r3 + 2r2 + 2.
We will prove a series of inequalities.

|Pv4,v7| ≥ 2r2 + 2 : (1)

Assume the inverse inequality. Since (1) is false, we can choose b ∈ Pv4,v7 such
that l4,5,7 ⊆ Br2(b), and since |l6| ≤ |l7|, |l4,5|, then l6 ⊆ Br2(b).
Now, if l3 ⊈ Br2(b), that would give that Br2(b) is a corner-subtree with |Br2(b)| ≥
|Pv1,v4∩Br2(b)| = 2r2+1, so by Lemma 3, we get a contradiction, so l3 ⊆ Br2(b).
Now, by Lemma 4, we can choose a ∈ l1, c ∈ l2 such that l1 ⊆ Br1(a) and
l2 ⊆ Br1(c) ⊆ Br3(c).
We finally get that T = Br1(a) ∪Br2(b) ∪Br3(c), so {r1, r2, r3} covers T , this is
a contradiction, which means (1) is proven.

|Pv1,v2| ≥ 2r2 + 2 : (2)

Assume the inverse inequality. Since (2) is false, we can choose b ∈ Pv1,v2 such
that l1,2 ⊆ Br2(b).
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Now, if l3 ⊈ Br2(b), that would give that Br2(b) is a corner-subtree with |Br2(b)| ≥
|Pv1,v4∩Br2(b)| = 2r2+1, so by Lemma 3, we get a contradiction, so l3 ⊆ Br2(b).
Furthermore, by Lemma 4, d(u345, v6) ≤ d(u345, v7) ≤ d(u345, v4) = |l4| ≤
2r1 ≤ r3, so l4,5,6,7 ⊆ Br3(u345).
We obtain that T = Br2(b)∪Br3(u345), so {r2, r3} covers T , so by Proposition
2, {r1, r2, r3} covers T , a contradiction. We have proven (2).

|Pv2,v4| ≥ 2r2 + 2r3 + 3 : (3)

Assume the inverse inequality. Choose c ∈ Pv2,v4 such that d(c, v4) = r3. Similarly
to Case 1 and 2, l4,5,6,7 ⊆ Br3(c).
Now, by Lemma 6, we can choose b ∈ Pv2,v4\Br3(c) such that Pv2,v4\Br3(c) ⊆
Br2(b).
Finally, by Lemma 4, we can choose a ∈ l1 such that l1 ⊆ Br1(a).
We get that T = Br1(a)∪Br2(b)∪Br3(c), so {r1, r2, r3} covers T , a contradiction.
We have proven (3).

|Pv1,v7| ≥ 2r2 + 2r3 + 3 : (4)

Assume the inverse inequality. Choose c ∈ Pv1,v7 such that d(c, v7) = r3. Similarly
to Case 1, 2, and 3, l4,5,6,7 ⊆ Br3(c).
Now, by Lemma 6, we can choose b ∈ Pv1,v7\Br3(c) such that Pv1,v7\Br3(c) ⊆
Br2(b).
Finally, by Lemma 4, we can choose a ∈ l2 such that l2 ⊆ Br1(a).
We get that T = Br1(a)∪Br2(b)∪Br3(c), so {r1, r2, r3} covers T , a contradiction.
We have proven (4).

Now, lets add (1),(2),(3), and (4):
|Pv4,v7|+ |Pv1,v2|+ |Pv2,v4|+ |Pv1,v7| ≥ (2r2 + 2) + (2r2 + 2) + (2r2 + 2r3 + 3) +
(2r2 + 2r3 + 3)
=⇒ (|l4|+ 1 + |l5|+ 1 + |l7|) + (|l1|+ 1|+ |l2|) + (|l2|+ 1 + |l3|+ 1 + |l4|) +
(|l1|+ 1 + |l3|+ 1 + |l5|+ 1 + |l7|) ≥ 8r2 + 4r3 + 10
=⇒ 2|T | > 2(|l1|+ |l2|+ |l3|+ |l4|+ |l5|+ |l7|) ≥ 2(2r3 + 2r2 + 2r1 + 3) + 4,
this is impossible.
Case 2 leads to a contradiction.

Both cases lead to a contradiction, which means our initial assumption that {r1, r2, r3}
doesn’t cover T was false, so {r1, r2, r3} covers T .
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Proposition 6. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as
in Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. If Pv1,v7 is the longest path in T
and {r1, r2, r3} doesn’t cover T , then |Pv1,v2|, |Pv6,v7| ≥ 2r2 + 2.

Proof. We will only prove that |Pv6,v7| ≥ 2r2 + 2. |Pv1,v2| ≥ 2r2 + 2 is symmetri-
cally identical.
Assume that |Pv6,v7| ≤ 2r2 + 1. First notice that by Lemma 3, we must have
that |l6| ≥ 1.
We will now prove a series of inequalities.

|Pv1,v4| ≥ 2r1 + 2r3 + 3 : (5)

Assume the inverse inequality. Choose a ∈ Pv1,v7 such that d(a, v7) = r2, a
exists by Corollary 2. Then l6,7 ⊆ Br2(b) since |l7| ≥ |l6| and by (5), hence
l5,6,7 ⊆ Br2(b), otherwise Br2(b) would be a corner-subtree of size at least 2r2+1,
which contradicts Lemma 3.
Now, choose c ∈ Pv1,v4 with d(c, v1) = r3, so l1,2 ⊆ Br3(c) by Lemma 5 and we
can choose a ∈ Pv1,v4\Br3(c) such that Pv1,v4\Br3(c) ⊆ Br1(a) by Lemma 6.
Hence we would have that T = Br1(a)∪Br2(b)∪Br3(c), so {r1, r2, r3} covers T ,
a contradiction. (5) is proven.

|Pv2,v7| ≥ 2r1 + 2r3 + 3 : (6)

Assume the inverse inequality. |l4| + 1 ≤ 2r1 + 1 and |l5| + 1 + |l7| ≤ 2r2, so
|l4|+1+ |l5|+1+ |l7| ≤ 4r2+1 ≤ 2r3+1. Thus, we can choose c ∈ Pv1,v7 such
that d(c, v7) = r3 by Corollary 2, so l4,5,6,7 ⊆ Br3(c).
We can then choose a ∈ Pv1,v7\Br3(c) such that Pv1,v7\Br3(c) ⊆ Br1(a) and b ∈ l2
such that l2 ⊆ Br2(b). Then T = Br1(a) ∪Br2(b) ∪Br3(c), so {r1, r2, r3} covers
T , a contradiction.

|Pv1,v2| ≥ 2r1 + 2 : (7)

Assume the inverse inequality. By Lemma 4, we can choose c ∈ l4 such
that l4 ⊆ Br3(c). Next, by Corollary 2, we can choose a ∈ Pv1,v4 such that
d(a, v1) = r1 and b ∈ Pv4,v7 such that d(b, v7) = r2, then similarly to the proof
of (5), l5,6,7 ⊆ Br2(b) and l1,2,3 ⊆ Br1(a), so T = Br1(a) ∪ Br2(b) ∪ Br3(c), so
{r1, r2, r3} covers T , a contradiction. (7) is proven.

|Pv4,v7| ≥ 2r1 + 2 : (8)
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Assume the inverse inequality. By Lemma 2 applied on l4,5,6,7, we can choose
b ∈ l4,5,6,7 such that l4,5,6,7 ⊆ Br2(b), but then l3 ⊆ Br2(b), otherwise Br2(b) would
be a corner-subtree, which would contradict Lemma 3. We can then cover l1 with
r3 and l2 with r1 by Lemma 4, {r1, r2, r3} would cover T , which is a contradiction.

Knowing |l6| ≥ 1, we can add inequalities (5), (6), (7), and (8) to get that
2|T | + 3 ≥ 2|l1| + 2|l2| + 2|l3| + 2|l4| + 2|l5| + 2|l7| + 8 = |Pv1,v4| + |Pv2,v7| +
|Pv1,v2|+ |Pv4,v7| ≥ 4r3 + 4r2 + 4r1 + 10 ≥ 2|T |+ 4, a contradiction.
We get that |l6|+ 1 + |l7| > 2r2 + 1, so |l6|+ |l7| ≥ 2r2 + 1.

Proposition 7. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as
in Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. If Pv1,v7 is the longest path in T ,
|l2,3| ≤ |l5,6|„ and {r1, r2, r3} doesn’t cover T , then |Pv1,v4| ≥ 2r3 + 2.

Proof. Assume that |Pv1,v4| ≤ 2r3. We will prove a series of inequalities.

|Pv1,v6| ≥ 2r2 + 2r3 + 3 : (9)

Assume the inverse inequality. We can choose c ∈ Pv1,v7 such that d(c, v1) = r3,
and since |l4| ≤ |l1| + 1 + |l3| and |Pv1,v4| ≤ 2r3, then l1,2,3,4 ⊆ Br3(c). We can
then cover l7 with r1 by Lemma 4 and cover Pv1,v6\Br3(c) with r2, so {r1, r2, r3}
covers T , a contradiction. (9) is proven.

|Pv4,v7| ≥ 2r3 + 2 : (10)

Assume the inverse inequality. Then similarly to (9) by symmetry, |Pv2,v7| ≥
2r2 + 2r3 + 2. Also, from Proposition 6, |Pv1,v2|, |Pv6,v7| ≥ 2r2 + 1.
Adding all of this together with (9), we get that 2|T | − 2|l4|+ 2 = 2|l1|+ 2|l2|+
2|l3|+2|l5|+2|l6|+2|l7|+8 = |Pv1,v6|+|Pv2,v7|+|Pv1,v2|+|Pv6,v7| ≥ 8r2+4r3+8 ≥
2|T |+ 2, which implies |l4| = 0.
That means v4 = u345, so |T | + 1 ≥ |Pv1,u345

| + |Pu345,v7| ≥ |Pv1,v4| + |Pv4,v7| ≥
4r3 + 4 ≥ 2r3 + 2r2 + 2r1 + 4 = |T |+ 1
=⇒ |T | = |Pv1,v7|, so T is a path, which contradicts Lemma 7. (10) is proven.

|Pv2,v4| ≥ 2r2 + 2 : (11)

Assume the inverse inequality. We study two cases.
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Case 1: |l4| ≥ |l2,3|
We have that |Pv4,v7| ≥ 2r2 + 2r3 + 3. Otherwise, we could choose b ∈ Pv4,v7

such that d(b, v4) = r2, then l2,3,4 ⊆ Br2(b) by our case and we can choose c ∈
Pv4,v7\Br2(b) such that l4,5,6,7\Br2(b) by Lemma 6 and because |l6| ≤ |l7|. Then
we could choose a ∈ l1 such that l1 ⊆ Br1(a). Thus T = Br1(a)∪Br2(b)∪Br3(c),
a contradiction.
From this, (9) and Proposition 6 (|Pv6,v7|, |Pv1,v2| ≥ 2r2 + 2), we can add these
inequalities together to get 2|T | − |l2| − |l3| − |l4| = 2|l1| + |l2| + |l3| + |l4| +
2|l5|+2|l6|+2|l7|+6 = |Pv4,v7|+ |Pv1,v6|+ |Pv6,v7| ≥ 8r2 +4r3 +10 ≥ 2|T |+4
=⇒ 0 ≥ |l1|+ |l2|+ |l3|+ |l4|+ 4 ≥ 4, contradiction.

Case 2: |l4| < |l2,3|
We have that |Pv2,v7| ≥ 2r2 + 2r3 + 3. Otherwise, we could choose b ∈ Pv2,v7

such that d(b, v2) = r2, then l2,3,4 ⊆ Br2(b) by our case and we can choose c ∈
Pv4,v7\Br2(b) such that l2,3,5,6,7\Br2(b) by Lemma 6 and because |l6| ≤ |l7|. Then
we could choose a ∈ l1 such that l1 ⊆ Br1(a). Thus T = Br1(a)∪Br2(b)∪Br3(c),
a contradiction.
From this, (9) and Proposition 6 (|Pv6,v7|, |Pv1,v2| ≥ 2r1 + 2), we can add these
inequalities together to get 2|T | − 2|l4|+1 = 2|l1|+2|l2|+2|l3|+2|l5|+2|l6|+
2|l7|+7 = |Pv1,v2|+ |Pv1,v6|+ |Pv2,v7|+ |Pv6,v7| ≥ 4r1+4r2+4r3+10 = 2|T |+6
=⇒ 0 ≤ 5 + 2|l4| ≤ 4, contradiction.

In both cases, we have reached a contradiction, so (11) is proven.

We can then add (9), (10), (11), and Proposition 6 (|Pv6,v7|, |Pv1,v2| ≥ 2r1+2).
We get that 2|T | + 3 = 2|l1| + 2|l2| + 2|l3| + 2|l4| + 2|l5| + 2|l6| + 2|l7| + 9 =
|Pv1,v6|+ |Pv2,v4|+ |Pv4,v7|+ |Pv6,v7|+ |Pv1,v2| ≥ 4r1 + 4r2 + 4r3 + 11 ≥ 2|T |+ 5
=⇒ 3 ≥ 5, a contradiction. We have proven the proposition.

Proposition 8. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as
in Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. If Pv1,v7 is the longest path in T ,
|l2,3| ≤ |l5,6|, and {r1, r2, r3} doesn’t cover T , then |Pv4,v6| ≥ 2r3 + 2.

Proof. Assume for a contradiction that |l4| ≤ |l2,3|.
We will prove a series of inequalities.

|Pv2,v6| ≥ 2r3 + 1 : (12)
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Assume the inverse inequality. Since |l4| ≤ |l2,3| ≤ |l5,6|, Pv2,v6 is the longest path
in l2,3,4,5,6, so by Lemma 2, we can cover l2,3,4,5,6 with r3. Then by Lemma 4,
we can cover l1 with r1 and l7 with r2. {r1, r2, r3} covers T , a contradiction. (12)
is proven.

|Pv4,v7| ≤ 2r3 + 1 : (13)

Assume the inverse inequality. We can add it with (12), Proposition 7 and
Proposition 6 (|Pv6,v7|, |Pv1,v2| ≥ 2r2+1), we get that 2|T |+3 = 2|l1|+2|l2|+
2|l3|+2|l4|+2|l5|+2|l6|+2|l7|+9 = |Pv4,v7|+|Pv2,v6|+|Pv1,v4|+|Pv1,v2|+|Pv6,v7| ≥
4r2+6r3+10 ≥ 4r1+4r2+4r3+10 ≥ 2|T |+4, a contradiction. (13) is proven.

|Pv2,v7| ≥ 2r3 + 2r2 + 2 : (14)

Assume the inverse inequality. Choose c ∈ Pv1,v7 such that d(c, v7) = r3, c exists by
Corollary 2. Then by (13) and because |l6| ≤ |l7|, we have that l4,5,6,7 ⊆ Br3(c).
We can then cover Pv2,v7\Br3(c) with r2 by Lemma 6 and l1 by Lemma 4.
{r1, r2, r3} covers T , a contradiction. (14) is proven.

|Pv4,v6| ≥ 2r1 + 2 : (15)

Assume the inverse inequality. Then r1 covers l4,5,6.
Furthermore, |l1,3| = |l1|+1+|l3| ≤ |l1|+|l2|+1+|l3| = |l1|+|l2,3| ≤ |l1|+|l5,6| ≤
|l1|+ |Pv4,v6| ≤ 2r1 + 2r1 + 1 ≤ 2r3 + 1 by Lemma 4.
So we can cover l1,3 with r3. But then since |l1,2| = |l1|+1+ |l2| ≤ 2r1+1+2r1 ≤
2r3 + 1 by Lemma 4, then r3 can cover l1,2,3.
Finally, by Lemma 4, r2 can cover l7.
{r1, r2, r3} can cover T , a contradiction. (15) is proven.

Now, we can add Proposition 6 (|Pv1,v2| ≥ 2r1, |Pv6,v7| ≥ 2r2+2), Proposition
7, (14), and (15). We get that 2|T |+3 = 2|l1|+2|l2|+2|l3|+2|l4|+2|l5|+2|l6|+
2|l7|+9 = |Pv1,v2|+ |Pv6,v7|+ |Pv1,v4|+ |Pv2,v7|+ |Pv4,v6| ≥ 4r1+4r2+4r3+10 =
2|T |+ 4, a contradiction.
So |l4| > |l2,3|.

Now, assume that |Pv2,v6| ≤ 2r3 + 1.
Since |l4| > |l2,3|, Pv2,v6 is the longest path in l2,3,4,5,6. Then, by Lemma 2, we
can cover l2,3,4,5,6 with r3. Then, by Lemma 4, we can cover l1 with r1 and l7
with r2. So {r1, r2.r3} covers T , a contradiction.
That means |Pv2,v6| ≥ 2r3 + 2. The proposition is proven.
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Proposition 9. Let 0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and T be a 5-leaves tree as
in Figure 1 that has 2(r1 + r2 + r3) + 3 vertices. If Pv1,v7 is the longest path in T ,
|l2,3| ≤ |l5,6|, and {r1, r2, r3} doesn’t cover T , then |Pv2,v7| ≥ 2r3 + 2.

Proof. Assume for a contradiction that |Pv2,v7| ≤ 2r3 + 1.
Choose c ∈ Pv2,v7 such that d(c, v7) = r3. c exists by Corollary 2. Since
|l6| ≤ |l7| and |Pv2,v7| ≤ 2r3+1, then l2,3,5,6,7 ⊆ Br3(c). Then, by Lemma 4, we
can cover l4 with r2 and l1 with r1. {r1, r2, r3} covers T , a contradiction.
We have proven the proposition.

We now introduce a new type of subgraph. Let T be a tree. Let L be the set of
leaves of T . We know L ̸= ∅, so |T\L| < |T |.
If we keep repeatedly removing the set of leaves, we must eventually reach an empty
graph, which has 0 leaf.
Let’s take the last step before obtaining the empty graph. This tree only contains
leafs, so only degree ≤ 1 vertices. The only possible such trees are P1 and P2,
which have 1 and 2 leafs respectively. That means there must be a step during the
process of removing leaves where we had a tree with at most 5 leaves.
We introduce this notation:

Notation 7. The first graph with at most k leaves obtained by repeating the
process described above starting from tree T is called the fundamental k-subtree
of T .

We will then need one last result before proving Theorem 1:

Proposition 10. Let 1 ≤ r1, · · · , rk, T be a tree with at least 3 vertices and L
be its set of leaves. If {r1, · · · , rk} doesn’t cover T , then {r1 − 1, · · · , rk − 1}
doesn’t cover T\L.

Proof. We will prove the contrapositive. Assume {r1 − 1, r2 − 1, r3 − 1} covers
T\L ⊆ T . Let u1, · · · , uk ∈ T\L such that V (T\L) = Br1−1(u1) ∪ · · · ∪
Brk−1(uk).
Notice that Bri−1(ui) ⊆ Bri(ui) for any 1 ≤ i ≤ k.
Let now v ∈ T . If v ∈ T\L, then choose 1 ≤ i ≤ k such that v ∈ Bri−1(ui),
then v ∈ Bri(ui).
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If v /∈ T\L, then v ∈ L. Take v ̸= u ∈ N(v). u is not a leaf of T , so u ∈ T\L.
Choose 1 ≤ i ≤ k such that u ∈ Bri−1(ui). Then d(v, ui) = |Pui,v| − 1 =
|Pui,u| = d(ui, u) + 1 ≤ ri, hence v ∈ Bri(ui).
Since v was chosen arbitrarily in T , then T = Br1(u1) ∪ · · · ∪Brk(uk).
{r1, · · · , rk} covers T , the contrapositive is proven.

Corollary 3. Let 1 ≤ r1, · · · , rk and T be a tree with at least 3 vertices. Let
H be the fundamental (2k − 1)-subtree of T and let m be the number of leaves
deletions needed to go from T to H. If {r1, · · · , rk} doesn’t cover T , then {r1 −
m, · · · , rk −m} doesn’t H.

Proof. First notice that {r1 − 1, · · · , rk − 1} doesn’t cover T\L where L is the
set of leaves of T by Proposition 10. Then {r1 − 2, · · · , rk − 2} doesn’t cover
T\L\L′ where L′ is the set of leaves of T\L. This reasoning can be repeated until
we reach H. Then {r1 −m, · · · , rk −m} doesn’t cover H.

We now have all the preliminary results we need to prove Theorem 1:

Theorem 1. If 0 ≤ r1 ≤ r2 ≤ r3 and 2r2 ≤ r3, then {r1, r2, r3} is a cover.

Proof. Assume this theorem is false for a contradiction. This means there exist
0 ≤ r1 ≤ r2 ≤ r3 with 2r2 ≤ r3 and a connected graph G with 2(r1+ r2+ r3)+3
vertices such that {r1, r2, r3} doesn’t cover G.

Let H ⊆ G be a spanning tree of G. Then by Proposition 3, {r1, r2, r3}
doesn’t cover H.

Let now T be the fundamental 5-subtree of H, |T | ≥ 3. Let m be the number
of leaves deletions needed to go from T to H. By Corollary 3, since {r1, r2, r3}
doesn’t cover H and 5 = 2 ∗ 3− 1, then {r1 −m, r2 −m, r3 −m} doesn’t cover
T .

Now, at each leaves deletion we made to go from H to T , we know we re-
moved at least 6 leaves. Otherwise, T wouldn’t be the fundamental 5-subtree
of H. So |T | ≤ |H| − 6m = |G| − 6m = 2(r1 + r2 + r3) + 3 − 6m =
2((r1 −m) + (r2 −m) + (r3 −m)) + 3.
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Set r′i = ri −m for each i ∈ {1, 2, 3}.
·r1 ≤ r2 ≤ r3 =⇒ r1 −m ≤ r2 −m ≤ r3 −m =⇒ r′1 ≤ r′2 ≤ r′3.
·2r2 ≤ r3 =⇒ 2r′2 = 2r2 − 2m ≤ r3 − 2m ≤ r3 −m = r′3 =⇒ 2r′2 ≤ r′3.
·|T | ≤ 2((r1 −m) + (r2 −m) + (r3 −m)) + 3 = 2r′1 + 2r′2 + 2r′3 + 3.
·{r1 −m, r2 −m, r3 −m} doesn’t cover T =⇒ {r′1, r′2, r′3} doesn’t cover T .

Let T ′ be a copy of T to which we have attached one path with 2(r′1 + r′2 +
r′3)+3−|T | vertices to one of its leaves. T ′ is still a 5-leaves tree and by Propo-
sition 1, {r′1, r′2, r′3} doesn’t cover T ′.

So we have 0 ≤ r′1 ≤ r′2 ≤ r′3 with 2r′1 ≤ r′3 and T ′ a 5-leaves tree with
2(r′1 + r′2 + r′3) + 3 vertices such that {r′1, r′2, r′3} doesn’t cover T ′. T ′ can be
described as in Figure 1.

By symmetry, we may assume that the longest path in T ′ contains v1.
We now have three cases:

Case 1: Pv1,v2 is the longest path in T ′.
By Proposition 4, {r′1, r′2, r′3} covers T ′, a contradiction.

Case 2: Pv1,v4 is the longest path in T ′.
By Proposition 5, {r′1, r′2, r′3} covers T ′, a contradiction.

Case 3: Pv1,v7 is the longest path in T ′.
By adding all the results from Propositions 6,7,8,9, we get that 2|T | + 3 =
2|l1|+2|l2|+2|l3|+2|l4|+2|l5|+2|l6|+2|l7|+9 = |Pv1,v2|+ |Pv6,v7|+ |Pv1,v4|+
|Pv4,v6|+|Pv2,v7| ≥ 4r′2+6r′3+10 ≥ 4r′1+4r′2+4r′3+10 = 2|T ′|+4, a contradiction.

Case 4: Pv1,v6 is the longest path in T ′.
This case is the same as Case 3 by symmetry, so we still have a contradiction.

In all cases, we reach a contradiction. The theorem is proven.
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