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1 Introduction

This report consists in a summary and highlights of three months of research
on subelliptic operators. The first goal of this project was first to study the
Grushin 3D-operator, which we will see can be simplified to a 2D-operator, and
find its eigenfunctions. These eigenfunctions must also satisfy the Dirichlet
conditions, which means the image of those functions must be equal to 0 at
x = 1 and x = −1.
Depending on what we obtain, we might or might not need to use approxi-
mations of eigenfunctions. In the case where we unfortunately need approxi-
mations, this might decrease the number of eigenfunctions we will be able to
find. When we find functions, we will graph them on Desmos so that we can
see what they look like on x ∈ [−1, 1].

The second goal of this project was to find specific sets of couples (l,m) ∈ Z2

and study linear combinations of Legendre functions associated to these cou-
ples. We would then try to graph and observe the zero sets of all those linear
combinations.
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2 Important clarification before starting

For simplicity, in this document, we will consider that the 0-mapping function
is an eigenfunction.

We will use the term non-zero eigenfunction to refer to an eigenfunction that
is surely not the 0-mapping function.
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3 Facts and discoveries that will help us

3.1 Simplifying the Grushin operator

We want to find all eigenfunctions (defined on x ∈ [−1, 1]) of the Grushin

operator ∂2

∂x2 + x2 ∂
2

∂y2 of the form eikyV (x) where k ∈ N.
We also need that V (−1) = V (1) = 0.

Fact: eikyV (x) is an eigenfunction of ∂2

∂x2 +x
2 ∂2

∂y2 ⇐⇒ V (x) is an eigenfunc-

tion of − 1
k2

d2

dx2 + x2.

Proof:
( =⇒ )

Let eikyV (x) be an eigenfunction of ∂2

∂x2+x
2 ∂2

∂y2 , then (
∂2

∂x2+x
2 ∂2

∂y2 )(e
ikyV (x)) =

αeikyV (x) for some α ∈ R
=⇒ αeikyV (x) = eiky d

2V
dx2 + x2( d

2

dy2e
iky)V (x) = eiky d

2V
dx2 − k2x2eikyV (x)

=⇒ (− α
k2 )V (x) = − 1

k2
d2V
dx2 + x2V (x)

=⇒ V (x) is an eigenfunction of − 1
k2

d2

dx2 + x2.

( ⇐= )

Let V (x) be an eigenfunction of− 1
k2

d2

dx2+x
2. Then− 1

k2
d2V
dx2 +x

2V (x) = αV (x)
for some α ∈ R.
( ∂

2

∂x2+x
2 ∂2

∂y2 )(e
ikyV (x)) = eiky d

2V
dx2 +x

2 d2

dy2 (e
iky)V (x) = eiky ∂

2V
∂x2 −k

2xeikyV (x) =

−k2eiky(− 1
k2
d2V
dx2 + x2V (x)) = −k2eikyαV (x) = (−αk2)(eikyV (x))

=⇒ eikyV (x) is an eigenfunction of ∂2

∂x2 + x2 ∂
2

∂y2 .

Q.E.D.

Thanks to this fact, we can simplify our goal by trying to find all eigen-
functions V (x) of − 1

k2
d2

dx2 + x2 instead, where V (1) = V (−1) = 0.

To do so, we will use the power series method (see next section).
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3.2 Power series method

Assume V (x) =
∑∞

n=0 cnx
n is an eigenfunction of Ĥ = − 1

k2
d2

dx2 + x2. Then
for some E ∈ R,

E
k2V (x) = − 1

k2
d2

dx2V (x) + x2V (x)

=⇒ E
k2

∑∞
n=0 cnx

n = − 1
k2

d2

dx2 (
∑∞

n=0 cnx
n) + x2

∑∞
n=0 cnx

n

=
∑∞

n=0− 1
k2

d2

dx2 (cnx
n) +

∑∞
n=0 cnx

n+2

=
∑∞

n=0− 1
k2n(n− 1)cnx

n−2 +
∑∞

n=0 cnx
n+2

=⇒
∑∞

n=0
E
k2cnx

n =
∑∞

n=0− 1
k2n(n− 1)cnx

n−2 +
∑∞

n=0 cnx
n+2

=⇒ 0 =
∑∞

n=0
E
k2cnx

n +
∑∞

n=0
1
k2n(n− 1)cnx

n−2 −
∑∞

n=0 cnx
n+2

=⇒ 0 =
∑∞

n=0
E
k2cnx

n +
∑∞

n=2
1
k2n(n− 1)cnx

n−2 + 1
k2 ∗ 0 ∗ (0− 1)c0x

0−2

+ 1
k2 ∗ 1 ∗ (1− 1)c1x

1−2 −
∑∞

n=0 cnx
n+2

=⇒ 0 =
∑∞

n=0
E
k2cnx

n +
∑∞

n=2
1
k2n(n− 1)cnx

n−2 −
∑∞

n=0 cnx
n+2

=⇒ 0 =
∑∞

n=0Ecnx
n +

∑∞
n=0(n+ 2)(n+ 1)cn+2x

n −
∑∞

n=2 k
2cn−2x

n

=⇒ 0 =
∑∞

n=2Ecnx
n + Ec0x

0 + Ec1x
1 +

∑∞
n=2(n+ 2)(n+ 1)cn+2x

n

+ (0 + 2)(0 + 1)c0+2x
0 + (1 + 2)(1 + 1)c1+2x

1 −
∑∞

n=2 k
2cn−2x

n

=⇒ 0 =
∑∞

n=2Ecnx
n+(Ec0+2c2)+(Ec1+6c3)x+

∑∞
n=2(n+2)(n+1)cn+2x

n

−
∑∞

n=2 k
2cn−2x

n

=⇒ 0 =
∑∞

n=2[Ecn+(n+2)(n+1)cn+2−k2cn−2]x
n+(Ec0+2c2)+(Ec1+

6c3)x

=⇒ Ec0 + 2c2 = 0 and Ec1 + 6c3 = 0 and
Ecn + (n+ 2)(n+ 1)cn+2 − k2cn−2 = 0 for all n ≥ 2

=⇒ c2 = −E
2 c0 and c3 = −E

6 c1 and cn =
k2cn−4−Ecn−2

n(n−1) for all n ≥ 4

E
k2 is the eigenvalue of our eigenfunction V (x).
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We have now obtained our power series with arbitrary c0 and c1. However,
we notice that the cn’s are defined by cn−2 and cn−4 for all n ≥ 4. This is a
situation for which we have not found a way to obtain an exact function. We
gladly invite the readers to find one. We will then have to approximate it.

3.3 Verifying our power series makes sense

We know that e
x2

2 is an eigenfunction of Ĥ = − 1
k2

d2

dx2+x
2 if k = 1 and E = −1

Proof:
Ĥ(e

x2

2 ) = − d2

dx2e
x2

2 + x2e
x2

2 = − d
dx(xe

x2

2 ) + x2e
x2

2 =

− (e
x2

2 + x2e
x2

2 ) + x2e
x2

2 = −1 ∗ ex2

2 .

Now that we know V (x) = e
x2

2 is an eigenfunction of Ĥ, let’s look at its
taylor expansion around x = 0.

ea =
∑∞

n=0
an

n! =⇒ e
x2

2 =
∑∞

n=0
(x

2

2 )n

n! =
∑∞

n=0
x2n

2nn!

First, we have c1 = c3 = ... = 0.

Next, we have c0 = 1
20∗0! = 1 and c2x

2 = x2∗1

211! = x2

2 =⇒ c2 = 1
2 =

−−1
2 = −E

2 .

Also, we have c2n =
1

2nn! , thus c2n+2 = c2(n+1) =
1

2n+1(n+1)! .

Finally, k
2c2n−Ec2n+2

(2n+4)(2n+3) =
12c2n−(−1)c2n+2

(2n+4)(2n+3) = c2n+c2n+2

(2n+4)(2n+3) =
1

2nn!+
1

2n+1(n+1)!

(2n+4)(2n+3) =

2(n+1)

2n+1(n+1)!
+ 1

2n+1(n+1)!

(2n+4)(2n+3) = 2(n+1)+1
2n+1(n+1)!(2n+4)(2n+3) =

2n+3
2n+1(n+1)!2(n+2)(2n+3) =

1
2n+2(n+1)!(n+2) =

1
2n+2(n+2)! = c2(n+2) = c2n+4.

So c2n+4 =
k2c2n−Ec2n+2

(2n+4)(2n+3) .

With all of that, we can see that e
x2

2 perfectly fits the power series. This
is a good evidence that our power series makes sense.
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3.4 Quick study of our power series

We will prove some facts that will simplify our work in order to find eigenfunc-
tions/eigenvalues.

First, we can notice that our power series can be separated into two sub-
series: one with the odd terms and one with the even terms. Let’s verify that.

Let Ne = {n ∈ N0 : n is even} = {0, 2, 4, 6, 8...},
No = {n ∈ N0 : n is odd} = {1, 3, 5, 7, 9, ...}.

Let Ne≥4 = {n ∈ N : n ≥ 4 and n is even} and
No≥4 = {n ∈ N : n ≥ 4 and n is odd}.

V (x) = [c0 − E
2 c0x

2 +
∑

n∈Ne≥4
cnx

n] + [c1x− E
6 c1x

3 +
∑

n∈No≥4
cnx

n]

Fact: For all n ∈ Ne, cn ∝ c0.
Proof:
c0 ∝ c0 and c2 = −E

2 c0 ∝ c0 by definition.

Now, assume cn ∝ c0 and cn+2 ∝ c0. Then cn+4 =
k2cn−Ecn+2

(n+4)(n+3) ∝ c0.

By induction, we have proven the fact.

Very similarly, we can prove that for all n ∈ No, cn ∝ c1.

Furthermore, we can prove very similarly that for all n ∈ Ne, cn is
independent of c1 and for all n ∈ No, cn is independent of c0.

With all that said, we can establish two subfunctions
Ve(x) =

∑
n∈Ne

cnx
n = c0 − E

2 c0x
2 +

∑
n∈Ne≥4

cnx
n and

Vo(x) =
∑

n∈No
cnx

n = c1x− E
6 c1x

3 +
∑

n∈No≥4
cnx

n

where V (x) = Ve(x) + Vo(x).

So if c0 = 0, then V (x) = Vo(x) and if c1 = 0, then V (x) = Ve(x).

We now know that V (x) can be separated into two subfunctions, but the
most important facts that will simplify our work a lot are the following two.
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Fact: Ve(x) and Vo(x) are eigenfunctions of Ĥ = − 1
k2

d2

dx2 +x
2 with eigenvalues

E
k2 .

Proof: If we set c1 = 0, we get that V (x) = Ve(x), hence Ve(x) is an

eigenfunction of Ĥ = − 1
k2

d2

dx2 + x2 with eigenvalue E
k2 .

If we set c0 = 0, we get that V (x) = Vo(x), hence Vo(x) is an eigenfunction

of Ĥ = − 1
k2

d2

dx2 + x2 with eigenvalue E
k2 .

Fact: Ve(1) = Ve(−1) = Vo(1) = Vo(−1) = 0.

Proof:
Ve(1) = Ve(−1) =

∑
n∈Ne

cn and Vo(1) = −Vo(−1) =
∑

n∈No
cn.

V (1) = Ve(1) + Vo(1) = 0 = V (−1) = Ve(−1) + Vo(−1)
=⇒ Ve(1) + Vo(1) = Ve(1)− Vo(1)
=⇒ 2Vo(1) = 0 =⇒ Vo(1) = 0
=⇒ Ve(1) = Ve(−1) = Vo(1) = Vo(−1) = 0.

With all this information acquired, we can conclude a crucial fact:

If V (x) is an eigenfunction of Ĥ = − 1
k2

d2

dx2 + x2 with eigenvalue E
k2 and

V (1) = V (−1) = 0, then Ve(x) and Vo(x) both have those same exact prop-
erties.
i.e. Ve(x) and Vo(x) are eigenfunctions of Ĥ = − 1

k2
d2

dx2 + x2 with eigenvalues
E
k2 and Ve(1) = Ve(−1) = Vo(1) = Vo(−1) = 0

Let’s now assume that Pe(x) =
∑∞

n∈Ne
cnx

n (only even terms) is one ex-

isting NONZERO eigenfunction of Ĥ = − 1
k2

d2

dx2 + x2 with eigenvalue α and
that Pe(1) = Pe(−1) = 0.

Now, if there exists a nonzero eigenfunction Po(x) =
∑∞

n∈No
cnx

n (only odd

terms) of Ĥ = − 1
k2

d2

dx2 + x2 with eigenvalue α and Po(1) = Po(−1) = 0,
then we know that for any a, b ∈ R, aPe(x)+ bPo(x) is an eigenfunction with
eigenvalue α and that any eigenfunction with eigenvalue α can be written as
a linear combination of Pe(x) and Po(x).
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However, if such a function Po(x) doesn’t exist, then the only eigenfunction of
odd terms existing is Po(x) = 0, which means that the only nonzero eigenfunc-
tions with eigenvalue α that exist are of the form aPe(x) + bPo(x) = aPe(x)
where a ∈ R and that any function of the form aPe(x) is an eigenfunction
with eigenvalue α.

The same principle applies if Po(x) =
∑∞

n∈No
cnx

n (only odd terms) is one

existing nonzero eigenfunction of Ĥ = − 1
k2

d2

dx2 + x2 with eigenvalue α and
Po(1) = Po(−1) = 0.

Also, any function P (x) = aPe(x) + bPo(x) has the property that P (1) =
aPe(1)+ bPo(1) = a ∗ 0+ b ∗ 0 = 0 and that P (−1) = aPe(−1)+ bPo(−1) =
a ∗ 0 + b ∗ 0 = 0.

So let’s say we have found a function Pe(x) with eigenvalue α. We can
then seek for a function Po(x) with eigenvalue α.

If we find one, then we have generated two degrees of freedom of eigen-
functions of the form aPe(x) + bPo(x) where a, b ∈ R and those are all the
existing functions with eigenvalue α.

If we don’t find one, then all the eigenfunctions with eigenvalue α are of
the form aPe(x) where a ∈ R.

3.5 Extra interesting fact that will not help us

Extra fact 1: Let ψ(x) : R → R be continous. ψ(x) and xψ(x) are eigen-

functions of Ĥ = − d2

dx2 + x2 ⇐⇒ ψ(x) = Ae±
x2

2 for some A ∈ R.

i.e. ψ(x) = Ae±
x2

2 are the only eigenfunctions of Ĥ that have the prop-
erty that multiplying them by x gives us another eigenfunction.

Proof:
Let ψ(x) be continous.
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( =⇒ ) Assume ψ(x) ̸= 0 and xψ(x) are eigenfunctions of Ĥ = − d2

dx2 + x2.

Then −d2ψ
dx2 + x2ψ = α1ψ for some α1 ∈ R∗.

Also, − d2

dx2 (xψ(x)) + x3ψ = α2xψ for some α2 ∈ R∗

=⇒ − d
dx(ψ(x) + xdψdx ) + x3ψ = α2xψ

=⇒ −dψ
dx − dψ

dx − xd
2ψ
dx2 + x3ψ = α2xψ

=⇒ −2dψdx + x[−d2ψ
dx2 + x2ψ] = α2xψ

=⇒ −2dψdx + xα1ψ = α2xψ

=⇒ dψ
dx = α1−α2

2 xψ = 2bxψ where b ∈ R
=⇒

∫
dψ
ψ = b

∫
2xdx

=⇒ ln|ψ| = bx2 + ln|A| for some A ∈ R∗

=⇒ |ψ(x)| = ebx
2+ln|A| = |A|ebx2

=⇒ ψ(x) = Aebx
2

.

Now suppose that Aebx
2

is an eigenfunction of Ĥ, then Ĥ(ψ) = αψ for
some α ∈ R
=⇒ −d2ψ

dx2 + x2ψ = αψ

=⇒ − d
dx [2Abxe

bx2] + Ax2ebx
2

= −2Ab[ebx
2

+ 2bx2ebx
2

] + Ax2ebx
2

= −2Abebx
2

+ A[1− 4b2]x2ebx
2

= αAebx
2

=⇒ 1− 4b2 = 0

=⇒ b = ±1
2 =⇒ ψ(x) = Ae±

x2

2 .

( ⇐= ) Let ψ(x) = Ae±
x2

2 for some A ∈ R∗. Then Ĥ(ψ) =

− d2ψ
dx2 + x2ψ = − d

dx [±Axe
±x2

2 ] + Ax2e±
x2

2 =

− A[±e±x2

2 + x2e±x
2

] + Ax2e±x
2

= ∓Ae±x2

2

=⇒ ψ is an eigenfunction of Ĥ.

Finally, Ĥ(xψ) = −d2(xψ)
dx2 + x2(xψ) = − d

dx [Ae
±x2

2 + xdψdx ] + x3ψ =

∓ Axe±
x2

2 − [dψdx + xd
2ψ
dx2 ] + x3ψ = ∓Axe±x2

2 ∓ Axe±
x2

2 + x[−d2ψ
dx2 + x2ψ] =

∓2xψ + x[∓ψ] = ∓3xψ

=⇒ xψ(x) is an eigenfunction of Ĥ.
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4 Finding the wanted eigenfunctions

4.1 Methodology

The method we will use to find eigenfunctions goes as follows:

0. Define the function T (E, k, c0, c1, x) as an eigenfunction of Ĥ = − 1
k2

d2

dx2 +

x2 with eigenvalue E
k2 and c0, c1 as the first two coefficients of the power series

describing it.

1. We will set c0 = 1 and c1 = 0 and fix a wanted value for k ∈ N (let’s say
k = 1 for now).

2. We will only use a finite number of terms of our power series (let’s say we
use up to the m’th degree term, depending on how precise we want to be and
on the power of our computer). Let’s write it Tm(E, 1, 1, 0, x) =

∑m
n=0 cnx

n.

3. We will replace x by 1 and m by 14 to get a fairly good approximation.
We get T14(E, 1, 1, 0, 1), this value should be equal to 0, since our function
must equal 0 for x = −1 and x = 1. We now have T14(E, 1, 1, 0, 1), which is
only dependent on E.

4. We will finally find for which values of E do we have T14(E, 1, 1, 0, 1) = 0.
There are many ways to do it, we will do it by graphing T14(E, 1, 1, 0, 1) on
Desmos with E being the independent variable and by looking at the zeros
(see next page).

5. We will redo the same process but by setting c0 = 0 and c1 = 1 instead.
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4.2 Finding one eigenfunction by graphing

Graph for c0 = 1, c1 = 0, k = 1, m = 14 and x = 1:

We have T14(E, 1, 1, 0, 1):

We see that T14(E, 1, 1, 0, 1) = 0 at E = 2.597, E = 22.578 and E = 45.322.

So we have that T14(2.597, 1, 1, 0, x) is (approximately) an eigenfunction of

Ĥ = − d2

dx2 + x2 with eigenvalue E = 2.597.

If we develop and simplify T14(2.597, 1, 1, 0, x), we get
T14(2.597, 1, 1, 0, x) = −0.000007542x14 + 0.0000976x12 − 0.001119x10 +
0.009976x8 − 0.07482x6 + 0.3644x4 − 1.2985x2 + 1

We will verify that T14(2.597, 1, 1, 0, x) satisfies the conditions it needs to
satisfy.

If we apply − d2

dx2 + x2 − 2.597 on T14(2.597, 1, 1, 0, x), we should get a result
that is very close to 0 for any x ∈ [−1, 1]. Let’s try that:

(− d2

dx2 + x2 − 2.597)(T14(2.597, 1, 1, 0, x)) =

− (−0.001373x12+0.01288x10− 0.1007x8+0.5587x6− 2.245x4+4.373x2−
2.597) +
(x2−2.597)(−0.000007542x14+0.0000976x12−0.001119x10+0.009976x8−
0.07482x6 + 0.3644x4 − 1.2985x2 + 1)

= −0.000007542x16 + 0.0001172x14
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The coefficients we obtained are very close to 0, which is a very good clue that
T14(2.597, 1, 1, 0, x) is indeed an eigenfunction of − d2

dx2 + x2 with eigenvalue
E = 2.597.

Finally, if we evaluate T14(2.597, 1, 1, 0, x) at x = −1 and x = 1, we get
T14(2.597, 1, 1, 0,−1) = T14(2.597, 1, 1, 0, 1) = −0.0005502, which is very
close to 0. So our eigenfunction indeed approximately satisfies all the needed
conditions.

4.3 Quickly finding the two remaining eigenfunctions

According to our graph, we still have two eigenfunctions that we can find with
eigenvalues 22.597 and 45.322.
We will use the exact same procedure to find the functions:

T14(22.578, 1, 1, 0, x) = −0.05839x14 + 0.3848x12 − 1.9340x10 + 7.0028x8 −
16.4244x6 + 21.324x4 − 11.289x2 + 1

T14(45.322, 1, 1, 0, x) = −5.231x14+19.7875x12−55.2726x10+106.8874x8−
130.1801x6 + 85.6706x4 − 22.661x2 + 1

Let’s now apply Ĥ − E on each function.

(− d2

dx2 + x2 − 22.578)T14(22.578, 1, 1, 0, x) = −0.05839x16 + 1.703x14

(− d2

dx2 + x2 − 45.322)T14(45.322, 1, 1, 0, x) = −5.231x16 + 256.88x14

As we can see, the higher the eigenvalue is, the less accurate the approximation
of the eigenfunction seems to be. However, before concluding anything, we
will use the method of projections in order to see if indeed the approximation
gets worse as E increases.
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4.4 Method of projections

Let M0(P ) =
∫ 1

−1 P
2dx

M1(P, k, E) =
∫ 1

−1([−
1
k2

d2

dx2 + x2 − E]P )2dx.

If (M1(P,k,E)
M0(P )

)
1
2 is close to 0, then our approximation is good. Let’s first check

that for T14(2.597, 1, 1, 0, x):

M0(T14(2.597, 1, 1, 0, x)) =
∫ 1

−1(−0.000007542x14+0.0000976x12−0.001119x10+

0.009976x8 − 0.07482x6 + 0.3644x4 − 1.2985x2 + 1)2dx = 0.9857

M1(T14(2.597, 1, 1, 0, x), 1, 2.597) =
∫ 1

−1(−0.000007542x16+0.0001172x14)2dx

= 8.36692x10−10

(M1(T14(2.597,1,1,0,x),1,2.597)
M0(T14(2.597,1,1,0,x))

)
1
2 = (8.36692E−10

0.9857 )
1
2 = 0.0000291347

M0(T14(22.578, 1, 1, 0, x)) =
∫ 1

−1(−0.05839x14 + 0.3848x12 − 1.9340x10 +

7.0028x8 − 16.4244x6 + 21.324x4 − 11.289x2 + 1)2dx = 1.00453

M1(T14(22.578, 1, 1, 0, x), 1, 22.578) =
∫ 1

−1(−0.05839x16 + 1.703x14)2dx
= 0.18739

(M1(T14(22.578,1,1,0,x),1,22.578)
M0(T14(22.578,1,1,0,x))

)
1
2 = (0.187391.00453)

1
2 = 0.4319

M0(T14(45.322, 1, 1, 0, x)) =
∫ 1

−1(−5.231x14 + 19.7875x12 − 55.2726x10 +

106.8874x8 − 130.1801x6 + 85.6706x4 − 22.661x2 + 1)2dx = 0.9060

M1(T14(45.322, 1, 1, 0, x), 1, 45.322) =
∫ 1

−1(−5.231x16 + 256.88x14)2dx
= 4379.12

(M1(T14(45.322,1,1,0,x),1,45.322)
M0(T14(45.322,1,1,0,x))

)
1
2 = (4379.120.9060 )

1
2 = 69.52

As we can see, the estimation indeed becomes less accurate as E increases.
To solve this problem, we will simply add more terms to our power series so
that their accuracy is satisfying.
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4.5 Finding more accurate eigenvalues

Reminder: we have to remember that we estimated our 3 values of E, which
means they might not be accurate. For this reason, we will restart the process
from the beginning, but with 38 terms to find the eigenvalues.

T38(E, 1, 1, 0, 1) :

We notice here that our first eigenvalue is exactly the same (which is coher-
ent with the fact that its estimation was extremely good). Also, the second
eigenvalue has slightly changed and the third one has changed a lot.

We also notice .that we now have two new eigenvalues: E = 121.232 and
E = 199.791. Following what we have seen before, we can suspect that those
eigenvalues are not accurate at all, but that if we increase the value of m for
Tm(E, 1, 1, 0, 1), those eigenvalues will get more and more accurate.

We will now find which functions are associated with E = 22.518, E = 62.011,
E = 121.232 and E = 199.791, starting with m = 14 for Tm(E, 1, 1, 0, x).

4.6 Finding more accurate eigenfunctions

Let’s start with E = 22.518 and E = 62.011 and verify their accuracy:

T14(22.518, 1, 1, 0, x) = −0.05745x14 + 0.3793x12 − 1.9153x10 + 6.931x8 −
16.2962x6 + 21.2108x4 − 11.259x2 + 1

T14(62.011, 1, 1, 0, x) = −43.8819x14+124.6107x12−259.2713x10+370.935x8−
332.393x6 + 160.307x4 − 31.0055x2 + 1
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(− d2

dx2 + x2 − 22.518)T14(22.518, 1, 1, 0, x) = −0.05744x16 + 1.6728x14

M0(T14(22.518, 1, 1, 0, x)) =
∫ 1

−1(−0.05745x14 + 0.3793x12 − 1.9153x10 +

6.931x8 − 16.2962x6 + 21.2108x4 − 11.259x2 + 1)2dx = 1.00692

M1(T14(22.518, 1, 1, 0, x), 1, 22.518) =
∫ 1

−1(−0.05744x16 + 1.6728x14)2dx
= 0.18079

(M1(T14(22.518,1,1,0,x),1,22.518)
M0(T14(22.518,1,1,0,x))

)
1
2 = (0.180791.00692)

1
2 = 0.4237

(− d2

dx2 + x2 − 62.011)T14(62.011, 1, 1, 0, x) = −43.8819x16 + 2845.77x14

M0(T14(62.011, 1, 1, 0, x)) =
∫ 1

−1(−43.8819x14+124.6107x12−259.2713x10+

370.935x8 − 332.393x6 + 160.307x4 − 31.0055x2 + 1)2dx = 5.9472

M1(T14(62.011, 1, 1, 0, x), 1, 62.011) =
∫ 1

−1(−43.8819x16 + 2845.77x14)2dx
= 542514

(M1(T14(62.011,1,1,0,x),1,62.011)
M0(T14(62.011,1,1,0,x))

)
1
2 = (5425145.9472 )

1
2 = 302.029

For E = 22.718, our eigenfunction is a bit more accurate than for E = 22.578,
but still not enough. Also, even though E = 62.011 is a way more accurate
eigenvalue than E = 45.322, the eigenfunction we get out of it is way less
accurate (with m = 14). To solve both of these problems, we will simply add
more terms to our eigenfunctions (m = 38):

T38(22.518, 1, 1, 0, x) = −(9.8139e−17)x38+(2.8057e−15)x36−(7.4804e−
14)x34+(1.8507e−12)x32−(4.2255e−11)x30+(8.8447e−10)x28−(1.6845e−
8)x26+(2.8933e−7)x24−0.000004434x22+0.00005986x20−0.0007007x18+
0.006970x16 − 0.05745x14 +0.3793x12 − 1.9153x10 +6.931x8 − 16.2962x6 +
21.2108x4 − 11.259x2 + 1

T38(62.011, 1, 1, 0, x) = −(1.1811e− 10)x38+(2.1182e− 9)x36− (3.4712e−
8)x34+(5.1642e−7)x32−0.000006924x30+0.00008295x28−0.0008796x26+
0.008164x24−0.06547x22+0.4467x20−2.5463x18+11.8574x16−43.8819x14+
124.6107x12−259.2713x10+370.935x8−332.393x6+160.307x4−31.0055x2+
1
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(− d2

dx2+x
2−22.518)T38(22.518, 1, 1, 0, x) = −9.8139776e−17x40+5.0156536e−

15x38

M0(T38(22.518, 1, 1, 0, x)) =
∫ 1

−1(−(1.1811e − 10)x38 + (2.1182e − 9)x36 −
(3.4712e − 8)x34 + (5.1642e − 7)x32 − 0.000006924x30 + 0.00008295x28 −
0.0008796x26+0.008164x24−0.06547x22+0.4467x20−2.5463x18+11.8574x16−
43.8819x14+124.6107x12−259.2713x10+370.935x8−332.393x6+160.307x4−
31.0055x2 + 1)2dx ≈ 1.007

M1(T38(22.518, 1, 1, 0, x), 1, 22.518) =
∫ 1

−1((−9.8139e− 17)x40+(5.0157e−
15)x38)2dx = 6.2875e− 31

(M1(T38(22.518,1,1,0,x),1,22.518)
M0(T38(22.518,1,1,0,x))

)
1
2 = (6.2875e−31

1.007 )
1
2 = 7.9017e− 16

(− d2

dx2 +x
2−62.011)T38(62.011, 1, 1, 0, x) = −(1.1811e−10)x40+(9.4424e−

9)x38

M0(T38(62.011, 1, 1, 0, x)) =
∫ 1

−1(−(1.1811e − 10)x38 + (2.1182e − 9)x36 −
(3.4712e − 8)x34 + (5.1642e − 7)x32 − 0.000006924x30 + 0.00008295x28 −
0.0008796x26+0.008164x24−0.06547x22+0.4467x20−2.5463x18+11.8574x16−
43.8819x14+124.6107x12−259.2713x10+370.935x8−332.393x6+160.307x4−
31.0055x2 + 1)2dx ≈ 1.003

M1(T38(62.011, 1, 1, 0, x), 1, 62.011) =
∫ 1

−1(−(1.1811e− 10)x40+(9.4424e−
9)x38)2dx
= 2.2597e− 18

(M1(T38(62.011,1,1,0,x),1,62.011)
M0(T38(62.011,1,1,0,x))

)
1
2 = (2.2597e−18

1.003 )
1
2 = 1.5010e− 9

Now, we see that our functions are extremely good approximations of eigen-
functions. Now that we have found the eigenfunctions we wanted, we will try
the same with the two remaining eigenvalues we have.

4.7 Finding the two remaining eigenfunctions

We want to find the power series associated with E = 121.232 and E =
199.791 with m = 38:
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T38(121.232, 1, 1, 0, x) = −0.00001240x38 + 0.0001332x36 − 0.001292x34 +
0.01124x32−0.08703x30+0.5952x28−3.5599x26+18.4156x24−81.3568x22+
302.3795x20−928.7739x18+2307.09x16−4511.91x14+6713.59x12−7265.57x10+
5373.37x8 − 2477.04x6 + 612.47x4 − 60.616x2 + 1

T (199.791, 1, 1, 0, x) = −0.1197x38 +0.8174x36 − 5.0175x34 +27.5083x32 −
133.7228x30 + 571.647x28 − 2128.8869x26 + 6832.7025x24 − 18663.988x22 +
42754.969x20−80704.42x18+122871.5019x16−146932.306x14+133408.0928x12−
87943.4397x10+39560.4876x8−11080.199x6+1663.2685x4−99.8955x2+1

Let’s now see how accurate these functions are:

(− d2

dx2+x
2−121.232)T38(121.232, 1, 1, 0, x) = −0.00001240x40+0.001637x38

M0(T38(121.232, 1, 1, 0, x)) =
∫ 1

−1(−0.00001240x38+0.0001332x36−0.001292x34+

0.01124x32−0.08703x30+0.5952x28−3.5599x26+18.4156x24−81.3568x22+
302.3795x20−928.7739x18+2307.09x16−4511.91x14+6713.59x12−7265.57x10+
5373.37x8 − 2477.04x6 + 612.47x4 − 60.616x2 + 1)2dx ≈ 1.11

M1(T38(121.232, 1, 1, 0, x), 1, 121.232) =
∫ 1

−1(−0.00001240x40+0.001637x38)2dx
= 6.85804e− 8

(M1(T38(121.232,1,1,0,x),1,121.232)
M0(T38(121.232,1,1,0,x))

)
1
2 = (6.85804e−8

1.11 )
1
2 = 0.0002486

Now, all our eigenfunctions are very accurate, except the one with eigen-
value E = 199.791. If we really want to solve this problem, we can add more
terms to our power series to:

1) Get a more accurate eigenvalue

2) Get a more accurate associated eigenfunction

We will now redo all this process with the odd eigenfunctions.
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4.8 Repeat all this process for the odd functions

T39(E, 1, 0, 1, 1) :

We have E = 10.151, E = 39.799, E = 89.154, E = 158.245 and E =
240.628. We will not do it for E = 240.628 due to a lack of computational
power.

T15(10.151, 1, 0, 1, x) = −0.000069895x15 + 0.0007654x13 − 0.006909x11 +
0.04926x9 − 0.2599x7 + 0.9087x5 − 1.692x3 + x

T23(39.799, 1, 0, 1, x) = −0.00003658x23 + 0.0003802x21 − 0.003379x19 +
0.02518x17 − 0.1535x15 + 0.7414x13 − 2.7247x11 + 7.2115x9 − 12.7133x7 +
13.2497x5 − 6.6332x3 + x

T31(89.154, 1, 0, 1, x) = −0.00003568x31 + 0.0003401x29 − 0.002862x27 +
0.02104x25− 0.1335x23+0.7211x21− 3.2612x19+12.1063x17− 36.002x15+
83.1913x13−143.5971x11+175.5908x9−141.062x7+66.287x5−14.859∗x3+x

T39(158.245, 1, 0, 1, x) = −0.00004201x39 + 0.0003744x37 − 0.003014x35 +
0.02178x33−0.14029x31+0.7992x29−3.9917x27+17.3015x25−64.3216x23+
202.3247x21−529.8335x19+1132.8757x17−1931.1526x15+2546.9505x13−
2499.867x11 + 1732.746x9 − 787.064x7 + 208.729x5 − 26.374x3 + x

We will now measure their accuracies:

(− d2

dx2+x
2−10.151)T15(10.151, 1, 0, 1, x) = −0.000069895x17+0.0083635x15

M0(T15(10.151, 1, 0, 1, x)) =
∫ 1

−1(−0.000069895x15+0.0007654x13−0.006909x11+

0.04926x9 − 0.2599x7 + 0.9087x5 − 1.692x3 + x)2dx ≈ 0.0991042
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M1(T15(10.151, 1, 0, 1, x), 1, 10.151) =
∫ 1

−1(−0.000069895x17+0.0083635x15)2dx
= 4.44221e− 6

(M1(T15(10.151,1,0,1,x),1,10.151)
M0(T15(199.791,1,0,1,x))

)
1
2 = (4.44221e−6

0.0991042 )
1
2 = 0.006695

(− d2

dx2 + x2 − 39.799)T23(39.799, 1, 0, 1, x) = −0.00003658x25 +0.001836x23

M0(T15(39.799, 1, 0, 1, x)) =
∫ 1

−1(−0.00003658x23+0.0003802x21−0.003379x19+

0.02518x17 − 0.1535x15 + 0.7414x13 − 2.7247x11 + 7.2115x9 − 12.7133x7 +
13.2497x5 − 6.6332x3 + x)2dx ≈ 0.0252167

M1(T15(39.799, 1, 0, 1, x), 1, 39.799) =
∫ 1

−1(−0.00003658x25+0.001836x23)2dx
= 1.38012e− 7

(M1(T15(39.799,1,0,1,x),1,39.799)
M0(T15(199.791,1,0,1,x))

)
1
2 = (1.38012e−7

0.0252167 )
1
2 = 5.47304e− 6

(− d2

dx2 + x2 − 89.154)T23(89.154, 1, 0, 1, x) = −0.00003568x33 +0.003521x31

M0(T15(89.154, 1, 0, 1, x)) =
∫ 1

−1(−0.00003568x31+0.0003401x29−0.002862x27+

0.02104x25− 0.1335x23+0.7211x21− 3.2612x19+12.1063x17− 36.002x15+
83.1913x13 − 143.5971x11 + 175.5908x9 − 141.062x7 + 66.287x5 − 14.859 ∗
x3 + x)2dx ≈ 0.0133732

M1(T15(89.154, 1, 0, 1, x), 1, 89.154) =
∫ 1

−1(−0.00003658x25+0.003521x23)2dx
= 5.17089e− 7

(M1(T15(89.154,1,0,1,x),1,89.154)
M0(T15(199.791,1,0,1,x))

)
1
2 = (5.17089e−7

0.0133732 )
1
2 = 0.006218

(− d2

dx2+x
2−158.245)T23(158.245, 1, 0, 1, x) = −0.00004201x41+0.007022x39

M0(T15(158.245, 1, 0, 1, x)) =
∫ 1

−1(−0.00004201x39+0.0003744x37−0.003014x35+

0.02178x33−0.14029x31+0.7992x29−3.9917x27+17.3015x25−64.3216x23+
202.3247x21−529.8335x19+1132.8757x17−1931.1526x15+2546.9505x13−
2499.867x11+1732.746x9−787.064x7+208.729x5−26.374x3+x)2dx ≈ 0.11

M1(T15(158.245, 1, 0, 1, x), 1, 158.245) =
∫ 1

−1(−0.00003658x25+0.003521x23)2dx
= 5.17089e− 7
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(M1(T15(158.245,1,0,1,x),1,158.245)
M0(T15(199.791,1,0,1,x))

)
1
2 = (5.17089e−7

0.11 )
1
2 = 0.002168

All these functions are very accurate.

4.9 Repeat all this process for other values of k

k=2:

T38(E, 2, 1, 0, 1) :

T14(2.972, 2, 1, 0, x) = 1 − 1.486x2 + 0.7014x4 − 0.2676x6 + 0.0643x8 −
0.01402x10 +0.002264x12 − 0.000345x14 +0.00004201x16 − 0.000004918x18

T24(23.453, 2, 1, 0, x) = 1− 11.7265x2 + 23.2518x4 − 19.741x6 + 9.928x8 −
3.4646x10+0.9164x12−0.1942x14+0.03426x16−0.005165x18+0.0006793x20−
0.0000792x22 + 0.000008288x24

T32(62.99, 2, 1, 0, x) = 1− 31.495x2 +165.6558x4 − 352.021x6 +407.79x8 −
301.0557x10 + 156.02x12 − 60.615x14 + 18.509x16 − 4.602x18 + 0.9578x20 −
0.1704x22 + 0.02639x24 − 0.003606x26 + 0.0004401x28 − 4.844E − 05x30 +
4.8505E − 06x32

T38(122.222, 2, 1, 0, x) = 1−61.111x2+622.7591x4−2545.31003456257x6+
5599.7128x8+−7717.6594x10+7315.6562x12−5082.4438x14+2710.2044x16−
1148.9424x18 + 398.0707x20 − 115.2571x22 + 28.40441x24 − 6.0503x26 +
1.1284x28−0.1863x30+0.02751x32−0.003661x34+0.0004425x36−4.8877E−
05x38
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T45(E, 2, 0, 1, 1) :

T22(10.983, 2, 0, 1, x) = x − 1.8305x3 + 1.205x5 − 0.4895x7 + 0.1416x9 −
0.03194x11+0.00588x13−0.0009159x15+0.0001235x17−1.4677E−05x19+
1.5596E − 06x21 − 1.499E − 07x23

T29(40.766, 2, 0, 1, x) = x− 6.7943x3+14.0489x5− 14.2832x7+8.8676x9−
3.8057x11+1.2219x13−0.3097x15+0.06438x17−0.01129x19+0.00171x21−
0.00022704x23 + 2.6823E − 05x25 − 2.8513E − 06x27 + 2.7528E − 07x29

T37(90.14, 2, 0, 1, x) = x−15.0233x3+67.9102x5−147.1789x7+188.0326x9−
159.4362x11+96.9468x13−44.6502x15+16.2226x17−4.7978x19+1.1842x21−
0.2489x23+0.04529x25−0.007233x27+0.001026x29−0.0001306x31+1.5031E−
05x33 − 1.5774E − 06x35 + 1.5189E − 07x37
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k=3:

T44(E, 3, 1, 0, 1) :

T22(3.556, 3, 1, 0, x) = 1 − 1.778x2 + 1.2769x4 − 0.6848x6 + 0.2487x8 −
0.0783x10 + 0.01907x12 − 0.004245x14 + 0.0007779x16 − 0.0001339x18 +
0.00001968x20 − 2.7595E − 06x22

T28(25.015, 3, 1, 0, x) = 1 − 12.508x2 + 26.825x4 − 26.121x6 + 15.98x8 −
7.0537x10+2.4263x12−0.6823x14+0.1621x16−0.03332x18+0.006033x20−
0.0009758x22 + 0.0001426x24 − 0.000018998x26 + 0.0000023261x28

T34(64.632, 3, 1, 0, x) = 1− 32.316x2 + 174.804x4 − 386.29x6 + 473.93x8 −
378.974x10 + 217.87x12 − 96.11x14 + 34.053x16 − 10.019x18 + 2.5107x20 −
0.5464x22+0.1049x24−0.017998x26+0.002788x28−0.0003933x30+5.091E−
05x32 − 6.087E − 06x34
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T39(E, 3, 0, 1, 1) :

T25(12.325, 3, 0, 1, 1) = x − 2.0542x3 + 1.716x5 − 0.9437x7 + 0.37603x9 −
0.1193x11+0.03112x13−0.006941x15+0.001344x17−0.0002311x19+3.559E−
05x21 − 4.976E − 06x23 + 6.361E − 07x25

T31(42.388, 3, 0, 1, 1) = x−7.0647x3+15.4229x5−17.07919x7+11.9828x9−
6.0149x11+2.3257x13−0.7272x15+0.1903x17−0.04272x19+0.008389x21−
0.001463x23+0.0002292x25−0.000032589x27+4.2412E−06x29−5.08679E−
07x31

T39(91.792, 3, 0, 1, 1) = x−15.2987x3+70.6648x5−157.7178x7+209.9058x9−
188.0648x11+122.76922x13−61.7229x15+24.8919x17−8.3052x19+2.3485x21−
0.5738x23+0.123x25−0.02344x27+0.004013x29−0.0006229x31+8.8351E−
05x33 − 1.1526E − 05x35 + 1.3913E − 06x37 − 1.5617E − 07x39
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k=4:

T40(E, 4, 1, 0, 1) :

T28(4.3, 4, 1, 0, x) = 1−2.15x2+2.104x4−1.448x6+0.7123x8−0.2915x10+
0.09583x12 − 0.02789x14 + 0.006888x16 − 0.001555x18 + 0.0003076x20 −
5.672E − 05x22 + 9.359E − 06x24 − 0.000001458x26 + 2.064E − 07x28

T32(27.198, 4, 1, 0, x) = 1−13.599x2+32.1555x4+−36.4049x6+26.8684x8−
14.5916x10+6.2633x12+−2.2188x14+0.669x16−0.1755x18+0.04073x20−
0.008475x22 + 0.001598x24 − 0.0002755x26 + 4.3732E − 05x28 − 6.4334E −
06x30 + 8.8175E − 07x32

T38(66.951, 4, 1, 0, x) = 1−33.4755x2+188.1015x4−437.6398x6+576.9651x8−
507.0069x10+327.0914x12−164.8967x14+67.8061x16−23.4576x18+6.9879x20−
1.825x22+0.4239x24−0.08859x26+0.01682x28−0.002923x30+0.0004685x32−
6.9645E − 05x34 + 9.6503E − 06x36 − 1.2521E − 06x38
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T39(E, 4, 0, 1, 1) :

T29(14.119, 4, 0, 1, 1) = x − 2.353x3 + 2.461x5 − 1.724x7 + 0.88497x9 −
0.3643x11+0.1237x13−0.03608x15+0.009152x17−0.002066x19+0.0004181x21−
7.698E − 05x23 + 1.296E − 05x25 − 2.015E − 06x27 + 2.904E − 07x29

T35(44.677, 4, 0, 1, 1) = x−7.4462x3+17.4336x5−21.3814x7+17.1416x9+
−10.0722x11+4.6427x13−1.7551x15+0.5614x17−0.1554x19+0.0379x21−
0.008264x23 + 0.001627x25 − 0.0002919x27 + 4.8109E − 05x29 − 7.3325E −
06x31 + 1.03915E − 06x33 − 1.376E − 07x35

T39(94.12, 4, 0, 1, 1) = x−15.6867x3+74.6215x5−173.199x7+242.9921x9−
233.1055x11+165.5626x13−91.964x15+41.5612x17−15.7403x19+5.1106x21−
1.4483x23+0.3635x25−0.08174x27+0.01664x29−0.00309x31+0.0005275x33−
8.3268E − 05x35 + 1.222E − 05x37 − 1.6751E − 06x39
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4.10 Measuring the accuracies

(− d2

dx2 + x2 − 2.972)T18(2.972, 1, 1, 0, x) = −0.000004918x20 + 0.003536x18

M0(T15(2.972, 1, 1, 0, x)) =
∫ 1

−1(1−1.486x2+0.7014x4−0.2676x6+0.0643x8−
0.01402x10+0.002264x12−0.000345x14+0.00004201x16−0.000004918x18)2dx ≈
0.946456

M1(T15(2.972, 1, 1, 0, x), 1, 2.972) =
∫ 1

−1(−0.000004918x20+0.003536x18)2dx
= 6.74071e− 7

(M1(T15(2.972,1,1,0,x),1,2.972)
M0(T15(199.791,1,1,0,x))

)
1
2 = (6.74071e−7

0.94645 )
1
2 = 0.0008439

(− d2

dx2 +x
2− 23.453)T24(23.453, 2, 1, 0, x) = 0.000008288x26− 0.0002736x24

M0(T20(23.453, 2, 1, 0, x)) =
∫ 1

−1(1 − 11.7265x2 + 23.2518x4 − 19.741x6 +

9.928x8 − 3.4646x10 + 0.9164x12 − 0.1942x14 + 0.03426x16 − 0.005165x18 +
0.0006793x20 − 0.0000792x22 + 0.000008288x24)2dx ≈ 1.02503

M1(T20(23.453, 2, 1, 0, x), 1, 23.453) =
∫ 1

−1(0.000008288x
26−0.0002736x24)2dx

= 2.88013e− 9

(M1(T20(23.453,2,1,0,x),1,23.453)
M0(T15(199.791,1,1,0,x))

)
1
2 = (2.88013e−9

1.02503 )
1
2 = 0.0000530076

(− d2

dx2 +x2− 62.99)T32(62.99, 2, 1, 0, x) = 4.8505E− 06x34− 0.00035397x32

M0(T20(62.99, 2, 1, 0, x)) =
∫ 1

−1(1 − 31.495x2 + 165.6558x4 − 352.021x6 +

407.79x8 − 301.0557x10 + 156.02x12 − 60.615x14 + 18.509x16 − 4.602x18 +
0.9578x20−0.1704x22+0.02639x24−0.003606x26+0.0004401x28−4.844E−
05x30 + 4.8505E − 06x32)2dx ≈ 1.00979

M1(T20(62.99, 2, 1, 0, x), 1, 62.99) =
∫ 1

−1(4.8505E−06x34−0.00035397x32)2dx
= 3.7534e− 9

(M1(T20(62.99,2,1,0,x),1,62.99)
M0(T15(199.791,1,1,0,x))

)
1
2 = (3.7534e−9

1.00979 )
1
2 = 0.0000609673
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(− d2

dx2+x
2−122.222)T38(122.222, 2, 1, 0, x) = −4.8877E−05x40−0.00553x38

M0(T20(122.222, 2, 1, 0, x)) =
∫ 1

−1(1−61.111x2+622.7591x4−2545.31003456257x6+

5599.7128x8+−7717.6594x10+7315.6562x12−5082.4438x14+2710.2044x16−
1148.9424x18 + 398.0707x20 − 115.2571x22 + 28.40441x24 − 6.0503x26 +
1.1284x28−0.1863x30+0.02751x32−0.003661x34+0.0004425x36−4.8877E−
05x38)2dx ≈ 0.918346

M1(T20(122.222, 2, 1, 0, x), 1, 122.222) =
∫ 1

−1(−4.8877E−05x40−0.00553x38)2dx
= 8.08054e− 7

(M1(T20(122.222,2,1,0,x),1,122.222)
M0(T15(199.791,1,1,0,x))

)
1
2 = (8.08054e−7

0.918346 )
1
2 = 0.000938031

(− d2

dx2+x
2−10.983)T22(10.983, 2, 1, 0, x) = −1.499E−07x25+0.000003206x27

M0(T22(10.983, 2, 1, 0, x)) =
∫ 1

−1(x−1.8305x3+1.205x5−0.4895x7+0.1416x9−
0.03194x11+0.00588x13−0.0009159x15+0.0001235x17−1.4677E−05x19+
1.5596E − 06x21 − 1.499E − 07x23)2dx ≈ 0.092941

M1(T22(10.983, 2, 1, 0, x), 1, 10.983) =
∫ 1

−1(−1.499E−07x25+0.000003206x27)2dx
= 3.38372e− 13

(M1(T22(10.983,2,1,0,x),1,10.983)
M0(T15(199.791,1,1,0,x))

)
1
2 = (3.38372e−13

0.092941 )
1
2 = 1.90807e− 6

(− d2

dx2+x
2−40.766)T29(40.766, 2, 0, 1, x) = 2.7528E−07x25−0.00001407x27

M0(T29(40.766, 2, 0, 1, x)) =
∫ 1

−1(x − 6.7943x3 + 14.0489x5 − 14.2832x7 +

8.8676x9 − 3.8057x11 + 1.2219x13 − 0.3097x15 + 0.06438x17 − 0.01129x19 +
0.00171x21−0.00022704x23+2.6823E−05x25−2.8513E−06x27+2.7528E−
07x29)2dx ≈ 0.0248758

M1(T29(40.766, 2, 0, 1, x), 1, 40.766) =
∫ 1

−1(2.7528E−07x25−0.00001407x27)2dx
= 6.90938e− 12

(M1(T29(40.766,2,0,1,x),1,40.766)
M0(T29(40.766,2,0,1,x))

)
1
2 = (6.90938e−12

0.0248758 )
1
2 = 0.00001667
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(− d2

dx2 +x2− 90.14)T37(90.14, 2, 0, 1, x) = 1.5189E− 07x39− 0.00001527x27

M0(T37(90.14, 2, 0, 1, x)) =
∫ 1

−1(x− 15.0233x3 + 67.9102x5 − 147.1789x7 +

188.0326x9−159.4362x11+96.9468x13−44.6502x15+16.2226x17−4.7978x19+
1.1842x21−0.2489x23+0.04529x25−0.007233x27+0.001026x29−0.0001306x31+
1.5031E − 05x33 − 1.5774E − 06x35 + 1.5189E − 07x37)2dx ≈ 0.0705178

M1(T37(90.14, 2, 0, 1, x), 1, 90.14) =
∫ 1

−1(1.5189E−07x39−0.00001527x27)2dx
= 8.34113e− 12

(M1(T37(90.14,2,0,1,x),1,90.14)
M0(T37(90.14,2,0,1,x))

)
1
2 = (8.34113e−12

0.0705178 )
1
2 = 0.00001088

(− d2

dx2+x
2−3.556)T22(3.556, 3, 1, 0, x) = −2.7595E−06x24+0.00002949x22

M0(T22(3.556, 3, 1, 0, x)) =
∫ 1

−1(1−1.778x2+1.2769x4−0.6848x6+0.2487x8−
0.0783x10 + 0.01907x12 − 0.004245x14 + 0.0007779x16 − 0.0001339x18 +
0.00001968x20 − 2.7595E − 06x22)2dx = 0.890887

M1(T22(3.556, 3, 1, 0, x), 1, 3.556) =
∫ 1

−1(−2.7595E−06x24+0.00002949x22)2dx
= 3.20366e− 11

(M1(T22(3.556,3,1,0,x),1,3.556)
M0(T22(3.556,3,1,0,x))

)
1
2 = (3.20366e−11

0.890887 )
1
2 = 5.9967e− 6

(− d2

dx2+x
2−25.015)T28(25.015, 3, 1, 0, x) = 0.0000023261x30−0.000077185x28

M0(T28(25.015, 3, 1, 0, x)) =
∫ 1

−1(1 − 12.508x2 + 26.825x4 − 26.121x6 +

15.98x8 − 7.0537x10 + 2.4263x12 − 0.6823x14 + 0.1621x16 − 0.03332x18 +
0.006033x20−0.0009758x22+0.0001426x24−0.000018998x26+0.0000023261x28)2dx =
1.05298

M1(T28(25.015, 3, 1, 0, x), 1, 25.015) =
∫ 1

−1(0.0000023261x
30−0.000077185x28)2dx

= 1.97041e− 10

(M1(T28(25.015,3,1,0,x),1,25.015)
M0(T28(25.015,3,1,0,x))

)
1
2 = (1.97041e−10

1.05298 )
1
2 = 0.0000136794
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(− d2

dx2+x
2−64.632)T34(64.632, 3, 1, 0, x) = −6.087E−06x36+0.0004443x28

M0(T34(64.632, 3, 1, 0, x)) =
∫ 1

−1(1 − 32.316x2 + 174.804x4 − 386.29x6 +

473.93x8 − 378.974x10 + 217.87x12 − 96.11x14 + 34.053x16 − 10.019x18 +
2.5107x20−0.5464x22+0.1049x24−0.017998x26+0.002788x28−0.0003933x30+
5.091E − 05x32 − 6.087E − 06x34)2dx = 1.1795

M1(T34(64.632, 3, 1, 0, x), 1, 64.632) =
∫ 1

−1(−6.087E−06x36+0.0004443x28)2dx
= 6.76099e− 9

(M1(T34(64.632,3,1,0,x),1,64.632)
M0(T34(64.632,3,1,0,x))

)
1
2 = (6.76099e−9

1.1795 )
1
2 = 0.0000757105

(− d2

dx2 +x
2−12.325)T25(12.325, 3, 0, 1, 1) = 6.361E−07x27−0.00001282x25

M0(T25(12.325, 3, 0, 1, 1)) =
∫ 1

−1(x−2.0542x3+1.716x5−0.9437x7+0.37603x9−
0.1193x11+0.03112x13−0.006941x15+0.001344x17−0.0002311x19+3.559E−
05x21 − 4.976E − 06x23 + 6.361E − 07x25)2dx = 0.0839517

M1(T25(12.325, 3, 0, 1, 1), 1, 12.325) =
∫ 1

−1(6.361E−07x27−0.00001282x25)2dx
= 5.84445e− 12

(M1(T25(12.325,3,0,1,1),1,12.325)
M0(T25(12.325,3,0,1,1))

)
1
2 = (5.84445e−12

0.0839517 )
1
2 = 8.34367e− 6

(− d2

dx2+x
2−42.388)T31(42.388, 3, 0, 1, 1) = −5.08679E−07x33+0.000025803x31

M0(T31(42.388, 3, 0, 1, 1)) =
∫ 1

−1(x − 7.0647x3 + 15.4229x5 − 17.07919x7 +

11.9828x9 − 6.0149x11 + 2.3257x13 − 0.7272x15 + 0.1903x17 − 0.04272x19 +
0.008389x21 − 0.001463x23 + 0.0002292x25 − 0.000032589x27 + 4.2412E −
06x29 − 5.08679E − 07x31)2dx = 0.0243158

M1(T31(42.388, 3, 0, 1, 1), 1, 42.388) =
∫ 1

−1(−5.08679E−07x33+0.000025803x31)2dx
= 2.03363e− 11

(M1(T31(42.388,3,0,1,1),1,42.388)
M0(T31(42.388,3,0,1,1))

)
1
2 = (2.03363e−11

0.0243158 )
1
2 = 0.0000289196
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(− d2

dx2+x
2−91.792)T39(91.792, 3, 0, 1, 1) = −1.5617E−07x41+0.000015726x39

M0(T39(91.792, 3, 0, 1, 1)) =
∫ 1

−1(x− 15.2987x3+70.6648x5− 157.7178x7+

209.9058x9−188.0648x11+122.76922x13−61.7229x15+24.8919x17−8.3052x19+
2.3485x21−0.5738x23+0.123x25−0.02344x27+0.004013x29−0.0006229x31+
8.8351E−05x33−1.1526E−05x35+1.3913E−06x37−1.5617E−07x39)2dx ≈
0.0251766

M1(T39(91.792, 3, 0, 1, 1), 1, 91.792) =
∫ 1

−1(−1.5617E−07x41+0.000015726x39)2dx
= 6.14025e− 12

(M1(T39(91.792,3,0,1,1),1,91.792)
M0(T39(91.792,3,0,1,1))

)
1
2 = (6.14025e−12

0.0251766 )
1
2 = 0.0000312338

(− d2

dx2 + x2 − 4.3)T28(4.3, 4, 1, 0, x) = 2.064E − 07x30 − 0.000002346x28

M0(T28(4.3, 4, 1, 0, x)) =
∫ 1

−1(1 − 2.15x2 + 2.104x4 − 1.448x6 + 0.7123x8 −
0.2915x10+0.09583x12−0.02789x14+0.006888x16−0.001555x18+0.0003076x20−
5.672E−05x22+9.359E−06x24−0.000001458x26+2.064E−07x28)2dx =
0.828978

M1(T28(4.3, 4, 1, 0, x), 1, 4.3) =
∫ 1

−1(2.064E − 07x30 − 0.000002346x28)2dx
= 1.61681e− 13

(M1(T28(4.3,4,1,0,x),1,4.3)
M0(T28(4.3,4,1,0,x))

)
1
2 = (1.61681e−13

0.828978 )
1
2 = 4.41629e− 7

(− d2

dx2+x
2−27.198)T32(27.198, 4, 1, 0, x) = 8.8175E−07x34−0.000030437x32

M0(T32(27.198, 4, 1, 0, x)) =
∫ 1

−1(1− 13.599x2 + 32.1555x4 +−36.4049x6 +

26.8684x8− 14.5916x10+6.2633x12+−2.2188x14+0.669x16− 0.1755x18+
0.04073x20−0.008475x22+0.001598x24−0.0002755x26+4.3732E−05x28−
6.4334E − 06x30 + 8.8175E − 07x32)2dx ≈ 1.08521

M1(T32(27.198, 4, 1, 0, x), 1, 27.198) =
∫ 1

−1(8.8175E−07x34−0.000030437x32)2dx
= 2.69252e− 11

(M1(T32(27.198,4,1,0,x),1,27.198)
M0(T32(27.198,4,1,0,x))

)
1
2 = (2.69252e−11

1.08521 )
1
2 = 4.98107e− 6
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(− d2

dx2+x
2−66.951)T38(66.951, 4, 1, 0, x) = −1.2521E−06x40+0.00009348x38

M0(T38(66.951, 4, 1, 0, x)) =
∫ 1

−1(1−33.4755x2+188.1015x4−437.6398x6+

576.9651x8−507.0069x10+327.0914x12−164.8967x14+67.8061x16−23.4576x18+
6.9879x20−1.825x22+0.4239x24−0.08859x26+0.01682x28−0.002923x30+
0.0004685x32−6.9645E−05x34+9.6503E−06x36−1.2521E−06x38)2dx ≈
1.14882

M1(T38(66.951, 4, 1, 0, x), 1, 66.951) =
∫ 1

−1(−1.2521E−06x40+0.00009348x38)2dx
= 2.21087e− 10

(M1(T38(66.951,4,1,0,x),1,66.951)
M0(T38(66.951,4,1,0,x))

)
1
2 = (2.21087e−10

1.14882 )
1
2 = 0.0000138725

(− d2

dx2+x
2−14.119)T29(14.119, 4, 0, 1, 1) = 2.904E−07x31−0.000006115x29

M0(T29(14.119, 4, 0, 1, 1)) =
∫ 1

−1(x−2.353x3+2.461x5−1.724x7+0.88497x9−
0.3643x11+0.1237x13−0.03608x15+0.009152x17−0.002066x19+0.0004181x21−
7.698E− 05x23+1.296E− 05x25− 2.015E− 06x27+2.904E− 07x29)2dx =
0.0734848

M1(T29(14.119, 4, 0, 1, 1), 1, 14.119) =
∫ 1

−1(2.904E−07x31−0.000006115x29)2dx
= 1.1538e− 12

(M1(T29(14.119,4,0,1,1),1,14.119)
M0(T29(14.119,4,0,1,1))

)
1
2 = (1.1538e−12

0.0734848 )
1
2 = 3.96247e− 6

(− d2

dx2+x
2−44.677)T35(44.677, 4, 0, 1, 1) = −1.376E−07x37+0.000007187x35

M0(T35(44.677, 4, 0, 1, 1)) =
∫ 1

−1(x − 7.4462x3 + 17.4336x5 − 21.3814x7 +

17.1416x9+−10.0722x11+4.6427x13−1.7551x15+0.5614x17−0.1554x19+
0.0379x21−0.008264x23+0.001627x25−0.0002919x27+4.8109E−05x29−
7.3325E − 06x31 + 1.03915E − 06x33 − 1.376E − 07x35)2dx = 0.0296724

M1(T35(44.677, 4, 0, 1, 1), 1, 44.677) =
∫ 1

−1(−1.376E−07x37+0.000007187x35)2dx
= 1.40133e− 12

(M1(T35(44.677,4,0,1,1),1,44.677)
M0(T35(44.677,4,0,1,1))

)
1
2 = (1.40133e−12

0.0296724 )
1
2 = 6.87217e− 6

33



(− d2

dx2 +x
2−94.12)T39(94.12, 4, 0, 1, 1) = −1.6751E−06x41+0.00016988x39

M0(T39(94.12, 4, 0, 1, 1)) =
∫ 1

−1(x − 15.6867x3 + 74.6215x5 − 173.199x7 +

242.9921x9−233.1055x11+165.5626x13−91.964x15+41.5612x17−15.7403x19+
5.1106x21−1.4483x23+0.3635x25−0.08174x27+0.01664x29−0.00309x31+
0.0005275x33−8.3268E−05x35+1.222E−05x37−1.6751E−06x39)2dx ≈
0.0344058

M1(T39(94.12, 4, 0, 1, 1), 1, 94.12) =
∫ 1

−1(−1.6751E−06x41+0.00016988x39)2dx
= 7.16628e− 10

(M1(T39(94.12,4,0,1,1),1,94.12)
M0(T39(94.12,4,0,1,1))

)
1
2 = (7.16628e−10

0.0344058 )
1
2 = 0.000144322

We can see that all our functions are very accurate.
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5 Graphs of all accurate nonzero eigenfunc-
tions we found

5.1 k=1

T14(2.597, 1, 1, 0, x) :

T15(10.151, 1, 0, 1, x) :

35



T38(22.518, 1, 1, 0, x) :

T23(39.799, 1, 0, 1, x) :
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T38(62.011, 1, 1, 0, x) :

T31(89.154, 1, 0, 1, x) :

37



T38(121.232, 1, 1, 0, x) :

T39(158.245, 1, 0, 1, x) :
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5.2 k=2

T14(2.972, 2, 1, 0, x) :

T22(10.983, 2, 1, 0, x) :
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T20(23.453, 2, 1, 0, x) :

T29(40.766, 2, 0, 1, x) :

40



T32(62.99, 2, 1, 0, x) :

T37(90.14, 2, 0, 1, x) :
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T38(122.222, 2, 1, 0, x) :
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5.3 k=3

T22(3.556, 3, 1, 0, x) :

T25(12.325, 3, 0, 1, 1) :

43



T28(25.015, 3, 1, 0, x) :

T31(42.388, 3, 0, 1, 1) :

44



T34(64.632, 3, 1, 0, x) :

T39(91.792, 3, 0, 1, 1) :
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5.4 k=4

T28(4.3, 4, 1, 0, x) :

T29(14.119, 4, 0, 1, 1) :

46



T32(27.198, 4, 1, 0, x) :

T35(44.677, 4, 0, 1, 1) :

47



T38(66.951, 4, 1, 0, x) :

T39(94.12, 4, 0, 1, 1) :
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6 Part 2

6.1 Goal of part 2

Our first next goal is the following:

Define λa,b = a(a+ 1)− b2 and
Ba = {(l,m) : l ∈ N0,m ∈ Z, |m| ≤ l and a = λl,m}.

We want to find the smallest positive integer n number such that |Bn| ≥ 15
(if there exists one) and we want to get Bn.

Assuming n exists, if n is too large for our computer to handle such high
values, we will try to find other smaller positive integers mi such that Bmi

is
as large as possible.

Once we have obtained Bn we will define al,m, bl,m as being two N(0, 1)-
random real numbers associated with each (l,m) couple.

Finally, we will graph
∑

(l,m)∈Bl,m
[al,mcos(my)P

m
l (cos(x))+bl,msin(my)P

m
l (cos(x))]

where Pm
l (cos(x)) is the l,m-Legendre function. We will then try to graph

the zero set of each of these graphs.

As said above, if some couple (l,m) is too large to be handled by our com-
puter, we will have to decrease the value of n or only take a subset of Bn as
our set.
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6.2 Finding n

To find n, we will use a java program that will iterate through integers i from
0 to 10000 (we are hoping that n ≤ 10000 for now).
For each of these integers i, we will count how many positive integers j where
|j| ≤ i there are such that

√
j(j + 1)− i is an integer. This number of inte-

gers will be equal to |Bi|. Then as soon as we have Bi ≥ 15, we have found
n = i.

The reason why that works is because if k = ±
√
j(j + 1)− i ∈ Z, then |k| =√

j(j + 1)− i =
√
j2 + j − i ≤

√
j2 = j, so |k| < j, j ∈ N0 and k ∈ Z.

Then j(j+1)−k2 = j(j+1)−(
√
j(j + 1)− i)2 = j(j+1)−j(j+1)+i = i.

That means (j, k) ∈ Bi.
So if we find at least 15 couples (j, k) ∈ Bi, then we have found that n = i.

Also, we don’t need to verify for values of j greater than i, since if j(j +
1)− k2 = i, then it must be that j ≤ i.

Proof:
Let i ∈ N0. Now, assume ∃j ∈ N0, k ∈ Z, where i, |k| < j such that
i = j(j + 1)− k2.
We have j2 > k2 and j > i, hence j(j + 1) = j2 + j > i + k2 = j(j + 1).
This is a contradiction.
Q.E.D.

Here is another elegant proof:
Let i ∈ N0. Now, assume ∃j ∈ N0, k ∈ Z, where i, |k| < j such that
i = j(j + 1)− k2.

Then let a = (j − i) ∈ N, j = a + i. We have that |k| =
√
j(j + 1)− i =√

(a+ i)(a+ i+ 1)− i =
√

(a2 + ia+ a+ ia+ i2 + i)− i =√
a2 + 2ia+ i2 + a =

√
(a+ i)2 + a >

√
(a+ i)2 = a+ i.

Also, |k| =
√
(a+ i)2 + a <

√
(a+ i)2 + a+ a+ 2i+ 1 =√

(a+ i)2 + 2(a+ i) + 1 =
√

((a+ i) + 1)2 = a+ i+ 1.

So we have that a + i < |k| < a + i + 1, which contradicts the fact that
k ∈ Z, so our initial assumption that ∃j ∈ N0, k ∈ Z, where i, |k| < j such
that i = j(j + 1)− k2 was false.
Q.E.D.
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Here is our code:

And here is our output:

Now that we know that n = 236 and that |B236| = 16, we will find find
the 16 couples in B236 with another program.

Here is our code:

And here is our output:
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However, when we enter Pm
l (cos(x)) in Maple for each couple (l,m), we

see that it works for all of them, except (236,236) and (236,-236) because of
a lack of computational power.

In fact, we observe that it stops working around l = 120. To counter this
problem, we have many options:

1) Find the integer n < 120 such that |Bn| is maximised.

2) Stick with n = 236.

3) Find the integer n such that |{(l,m) : l ∈ N0, l < 120, m ∈ Z, |m| ≤ l
and a = λl,m}| is maximised.

We will try all 3 options and graph some samples with different coefficients
chosen with N(0, 1):

1) Here is our code to find the integer n < 120 such that |Bn| is maximised:

And here is our output:
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Here are the couples we obtain:

3) Here is our code to find the integer n such that |{(l,m) : l ∈ N0, l < 120,
m ∈ Z, |m| ≤ l and a = λl,m}| is maximised:

We get n = 866.

Here are the couples we obtain:

We now have 3 different values of n (56, 101 and 866) for which we will
graph many samples.

6.3 Define the coefficients

By randomly choosing the coefficients with N(0, 1) we have obtained those
lists of coefficients:
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At this point, we face a big problem for λm,l = 101: Maple cannot graph
Pm
l (cos(x)) if m is odd, and all our corresponding couples have an odd value

of m.

The reason why Maple is not able to graph for m odd is very unknown and
we suspect that this is linked to the reason why this project has not been
completed.

Here is what we obtain when we try to graph of of the samples for λm,l = 101:
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For this reason, we will only graph for λm,l = 236 and λm,l = 866.

6.4 Graphing

λm,l = 101:
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λm,l = 866:
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Those graphs are unfortunately not what we were expecting. They were sup-
posed to be very messy, but they are actually not.

We will not get their zero-set graphs, since they will not be what we are
looking for.

We have yet to figure out what the problem is with Maple and the com-
putations.
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7 Conclusion

We have found and graphed many eigenfunctions of Ĥ = − 1
k2

d2

dx2 + x2,
for different values of k. Also, for all these eigenfunctions V (x), we had
V (−1) = V (1) = 0.
We measured the accuracy of each of these functions and observed that they
were all very accurate.

With those functions, using a fact established at the beginning of this doc-
ument, we can very easily produce and graph eigenfunctions for the Grushin
operator ∂2

∂x2 + x2 ∂
2

∂y2 .

Even though we almost finished the second part of the project, we unfor-
tunately realised that the graphs we obtained with Maple were not what we
expected. For this reason, we didn’t try to get the zero sets, since they would
not be interesting to observe.
However, it would be interesting to figure out what caused these problems and
solve them to finally obtain what we wanted.

Despite this unfortunate situation, we have still coded a program that out-
puted us many couples (l,m) to be graphed as linear combinations of Legendre
functions.
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